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Abstract:  Variable selection techniques are important in statistical modeling because they seek to 

simultaneously reduce the chances of data overfitting and to minimize the effects of omission bias.  The 

Linear or Ordinary Least Squared regression model is particularly useful in variable selection because of 

its association with certain optimality criterions.  One of these is the Mallow’s Cp Criterion which 

evaluates the fit of a regression model by the squared distance between its predictions and the true values.  

The first part of this project seeks to implement an algorithm in C# .NET for variable selection using the 

Mallow’s Cp Criterion and also to test the viability of using a greedy version of such an algorithm in 

reducing computational costs.  The second half aims to verify the results of the algorithm through logistic 

regression.  The results affirmed the use of a greedy algorithm, and the logistic regression models also 

confirmed the Mallow’s Cp results.  However, further studies on the details of the Mallow’s Cp algorithm, a 

calibrated logistic regression modeling process, and perhaps incorporation of techniques such as cross-

validation may also be useful before drawing final conclusions concerning the reliability of the algorithm 

implemented.  Keywords: variable selection; overfitting; omission bias; linear least squared regression; 

Mallow’s Cp; logistic regression; C-Index 

 

Background 

 

Variable Selection 

 

Variable selection is an area of study concerned with the strategies for selecting one subset out of a pool of 

independent variables that is able to explain or predict the dependent variable well enough, such that all 

contributions from the variables that remain unselected may be neglected or considered pure error [13].  

Explanation and prediction are the two main goals of variable selection; But while the two are distinct-- a 

regression equation which gives a good prediction might not be very plausible from a theoretical 

viewpoint-- the techniques used for variable selection are generally identical in both cases [13].   Because 

the predictor variables are almost always intercorrelated, the values of parameter estimates will likely 

change whenever a predictor is either included or eliminated [8].  Therefore, it is crucial to monitor the 

parameters closely in the variable selection process.  

 

Parameters play a crucial role in understanding overfitting, a term for fitting a regression model with more 

variables than actually needed.  Given a matrix X containing the values of all predictor variables, and 

vector Y containing the dependent variable values, matrix algebra will allow us to find the optimal set of 

coefficients for the system of equations by multiply the pseudoinverse by Y as follows [4]: 
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Thus, the optimal parameters for a subset XA of X is βA = (XA
T
 XA)

-1 
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value).  Since it can also be shown that var(x
T
 β) ≥ var(xA

T 
βA), one can conclude that the variability of the 

predicted value YA = xA
T
βA is generally reduced when the prediction is based on a subset of all available 

predictors [13].  On the other hand, selecting too few variables can result in what is known as omission bias. 

Supposing that XB now contains all variables in X not included in XA and that at least one predictor in set B 

is nonredundant.  The expected value E(βA) can now be calculated as  
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with the second term representing the shift between the true value of βATrue and the expected value of its 

estimator βA.  The bias of the prediction is then,  
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In summary, the aim of variable selection is to select just enough variables so that such an omission bias is 

small, but at the same time to refrain from increasing the variance of the prediction more than necessary 

and thus resulting in overfitting [13].  In addition, variable selection techniques can generally be divided 

into two groups: Stepwise and Best-Subset.  The first enters or removes variables only one at a time, and 

hence can be performed with large numbers of independent variables, but may often overlook good subsets 

of predictors.  The second almost guarantees to find the best subset for each number of predictors but can 

only be performed when the number of predictors is small [2] [7] [13].   

 

 

Linear Least Squared Regression 

 

Linear Least Squared Regression, or Ordinary Least Squared Regression (OLS) is one method of variable 

selection that can be used to perform variable selection when working with binary, or indicator, dependent 

variables [6].  A regression model assumes the following two statistical relations about the data in question: 

1) That for each value of X, there exists a probability distribution of Y, and 2) that the expected values of 

these probability distributions of Y vary systematically with X [10].  In OLS, this relationship is assumed to 

be linear.   

 

OLS can be a valuable model for variable selection because associated with OLS are certain optimality 

criterions, used to determine how well a regression model fits the data, that can be employed in performing 

Best-Subset types of variable selection.  One of these which makes use of the residual sum of squares value 

obtained from an OLS Regression model is the Mallow’s Cp Criterion.   

 

 

Mallow’s Cp 
 

In Mallow’s Cp, it is first assumed that the model with all the predictors is the correct model and thus 

estimates the true residual variance σTrue
2 
 by  

 

σ
2
 = RSS(k) / (n-k)

 
  

 

where k is the number of available predictors, n denotes the number of observations, and RSS(k) is the 

residual sum of squares (the sum of the square of the difference between the observed value of the 

dependent variable and the value predicted by the model for all data points) with all the predictors in the 

model, or of the true model by assumption [1] [13].  Then, letting RSS(p) be the residual sum of squares 

with only p of the k predictors, Mallow’s Cp is given as 

 

  Cp = RSS(p) / σ
2 
  -  (n-2p).  

 

From a statistical viewpoint, Mallow’s Cp aims to minimize the expression  

 

(1/σ
2
) E(ŷ(p) – µ)

T 
(ŷ(p) – µ) 

 

where σ
2
 is used as a scale parameter, ŷ(p) is the prediction using only p predictors, and µ is the true but 

unknown mean response [13].  Thus, it evaluates the fit of a regression model by the squared distance 

between the true value and the model’s prediction.  And because this formula is an expected value of 

quadratic form involving population parameters typically unknown, Mallow’s Cp is meant to be an 

estimator of this expression [13].  It follows then, that if p predictors are sufficient to provide a good 

description of the data, then Mallow’s Cp will have the same scale of magnitude as the distance between 

ŷ(p) and µ.  Also, if a subset of p predictors can explain the dependent variable well, then the expected 

value of Cp can be shown to be E(Cp) = p [2(k-p) / (n-k-2)], implying that E(Cp) approaches p when n >> k 

and p.  Putting these facts together, we can derive that a good model will yield a Cp value that is 1) small 

and 2) near p.   
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Problems with Using OLS on Binary Dependent Variables 

 

While criterions like Mallow’s Cp make the OLS model valuable to the variable selection process, there are, 

nonetheless, a few shortcomings associated with using a Linear Least Squared model when handling 

dependent variables that are binary.  The first of these is that in a linear model, the predicted values will 

become greater than 1 or less than zero far enough down the extremes of the x-axis and such values are 

theoretically inadmissible [3].  The second is that, homoscedasticity, the assumption that the variance of Y 

is constant across all values of X cannot be the case with a binary dependent variable since the variance of 

Y is, in fact, equal to the product of the probabilities of getting a 1 or 0 [3].  Finally, when performing 

significance testing on the β parameters, OLS makes the assumption that all errors of prediction are 

normally distributed [3].  This can hardly be the case when Y takes on only the values 0 and 1 [3].   

 

As a result, other models of regression have been proposed to address these concerns.  These  include the 

Weighted Least Squares Regression model which takes into account heteroscedasticity. However, the 

candidate that has been the most successful in handling all three drawbacks is the Logistic Regression 

model.   

 

Logistic Regression 

 

The Logistic Regression equation  

  Logit(pi) = ln (pi / (1-pi) =  β0 + β1xi1 + … + βnxin  

relates pi, the probability of getting a dependent variable value of 1, to a linear combination of the predictor 

variables [6].  Associated with Logistic Regression is a different set of significance tests used to determine 

inclusion or elimination of each β coefficient from the model including the Wald Test, the Likelihood-Ratio 

Test, and the Hosmer-Lemeshow Goodness of Fit Test [5].  One method for determining how accurately a 

particular Logistic Regression model fits a set of data, however, is to calculate and examine the C-Index 

value of the model [12].  This number is equivalent to the area under the Receiver Operating 

Characteristics (ROC) curve, and thus will suggest that a model is a good fit if its value approaches 1 [12].   

 

 

Overview of Project 

 

In light of the above, this project seeks to make use of the Mallow’s Cp Criterion in an algorithm for 

variable selection, and thus employs the Linear Least Squared (OLS) model of regression.   However, 

though Mallow’s Cp is considered a Best-Subset type algorithm for variable selection, there is a possibility 

of lowering computational cost by implementing such an algorithm in a greedy manner [15].  This 

hypothesis is tested by running Mallow’s Cp on all possible subsets of predictor variables, and comparing 

the results to those of subsets selected through a greedy version of the algorithm.  The aforementioned 

shortcomings of OLS are also taken into account by verifying the results of the Mallow’s Cp algorithms 

using logistic regression modeling.  Instead of regenerating all possible subsets, or even using a stepwise 

method for calibrating the model, logistic regression is simply run on all the subsets already returned by 

Mallow’s Cp as the optimal subset for each possible subset size.  The C-Indices of each of these models are 

then calculated and used to verify the original Mallow’s Cp results.   

  

 

Material and Methods 

 

For algorithm testing, the Pima Indian Diabetes dataset from the UCI Machine Learning Repository was 

used.  This data set consisted of values for eight different predictor variables and a binary dependent 

variable indicating whether the individual had been diagnosed with diabetes.  The eight independent 

variables are 1. number of times pregnant, 2. Plasma glucose concentration after 2 hours in an oral glucose 

tolerance test, 3. Diastolic blood pressure (mm Hg), 4. Triceps skin fold thickness (mm), 5. 2-Hour serum 

insulin (mu U/ml), 6. Body mass index (weight in kg/(height in m)
2
 ), 7. Diabetes pedigree function, and 8. 

Age (years) [14].   
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The algorithm itself was implemented using the .NET C# library within the Microsoft Visual Studios 

environment. For verification, C# was used to generate data files of the right data format, and logistic 

regression was then performed on the data sets through the “Logistic Regression Calculating Page” [9].  

 

Table 1 contains a summary of the functions implemented as part of the overall algorithm. 

 

Table 1: Function Summaries 

 

Function Name 

 

 

Input Parameter(s) 

 

Return Value 

 

Function Calls 

 

Description 

1. ReadData string filename   Reads data contained 

in “data.txt” into 

ArrayList data. 

2. FindVariance   FullParameters Calculates Residual 

Sum of Squares and 

Variance of full set of 

predictor variables 

3. FullParameters  ArrayList X ComputeParameters Prepares data and 

returns computed 

parameter for full set 

of predictor variables 

4. ComputeParameters ArrayList A, 

ArrayList Y 

ArrayList X MatrixTranspose, 

MatrixMultiply, 

MatrixInverse 

Calcualte and return 

value of (A
T
A) 

-1 
A

T 
Y 

5. MatrixInverse ArrayList AO ArrayList inverse PrintMatrix 

PrintRow 

Perform Gauss-Jordan 

Elimination (including 

row swaps) to find and 

return inverse of AO 

6. MatrixTranspose ArrayList A ArrayList AT PrintMatrix Generates and returns 

the transpose of matrix 

A 

7. MatrixMultiply ArrayList A 

ArrayList B 

ArrayList product PrintMatrix Multiplies matrices A 

and B and returns 

product 

8. PrintMatrix ArrayList M   Prints matrix M to 

console for debugging 

purposes 

9. PrintRow ArrayList R   Prints row R of a 

matrix to console for 

debugging purposes 

10. MallowsCpGreedy   ComputeParameters, 

Quicksort 

Performs the greedy 

version of Mallow’s Cp 

and prints result to text 

file “CpTable.txt” 

(See below for details) 

11. MallowsCpAll   CalculateCps Performs Mallow’s Cp 

on all possible subsets 

of predictor variables 

and prints result to text 

file “CpTableAll.txt” 

(See below for details) 

12. ComputeCps ArrayList subsetList,  

int size 

 ComputeParameters, 

Quicksort 

Helper function to 

MallowsCpAll that 

does the bulk of the 



 5 

computation (See 

below for details) 

13. GenerateFiles    Generate data files of 

the proper format for 

all subsets of predictor 

variables that are to be 

used in the logistic 

regression validation 

process 

14. GetPValues string FileName, 

int lines, int start 

ArrayList pValues  Read in a logistic 

regression output file 

and the necessary line 

and character locator 

and returns the 

predicted values for 

the dependent variable 

calculated by the 

system 

15. FindCIndex ArrayList P   Takes a list of 

predicted values for 

the dependent variable, 

calculates the C-Index 

for the system, and 

writes the result to text 

file “CIndices.txt” (See 

below for details) 

16. Main string[] args   Instantiates a 

regression system and 

makes all the 

necessary function 

calls to perform 

required tasks 

  

 

MallowsCpGreedy (Algorithm Details) 

 

The MallowsCpGreedy function maintains an “existingSet” and a “remainingSet” of variables.  ExistingSet 

is initialized to an empty ArrayList, while remainingSet is initialized to contain all possible predictor 

variables.  While there is still at least one item remaining in remainingSet, MallowsCpGreedy performs a 

for loop over all variables remaining in remainingSet, adding each one to the current existingSet one by one 

(The temporary variable used to store this subset of existingSet plus one variable from the remainingSet is 

called “currentSet.”)  In each iteration of the for loop, MallowsCpGreedy 

 

1.  Generates a new data set from the full data ArrayList, including only entries from variables in 

the current currentSet.   

2.  Computes the optimal parameters for the current set of predictors 

3.  Calculates the residual sum of squares for the current OLS model 

4.  Computes the Cp value and adds it to a running list called CpList along with the index and 

number of the particular predictor variable added to the existingSet during this iteration of the 

for loop 

 

When the for loop has completed, the CpList is run through a Quicksort algorithm that sorts the list entries 

by their Cp values.  Data from the topmost, or minimum Cp, entry is then written to a text file called 

“CpTable.txt.”  This predictor variable is then removed from the remainingSet and added to the existingSet.  

MallowsCpGreedy exits when there are no more variables remaining in the remainingSet. 
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MallowsCpAll (Algorithm Details) 

 

The MallowsCpAll algorithm utilizes a system involving an integer counter “count” and bitwise 

comparators to generate all possible subsets of all possible sizes out of the set of all available predictor 

variables [4].  Each of the eight predictor variables are mapped to one bit of the integer counter, and 

inclusion and exclusion is indicated by the bit being set to 1 or 0 in each integer representation.  The 

variable count is looped through the values 1 and 255 and the number of 1’s in the least significant 8 bits 

are counted in each round.  The predictor variables corresponding to the 1’s are then added to a running list 

called “members.”  At the end of each round, a case statement parses the subset denoted by count into the 

appropriate bin according to the number of variables contained in members.  After all subsets have been 

added, each list of subsets, grouped by size, is passed to the CalculateCps function for further processing. 

 

 

CalculateCps (Algorithm Details) 

 

The details of CalculateCps is very similar to those of MallowsCpGreedy.  However, instead of looping 

through each subset of the existingSet plus one variable from the remaining set until the remainingSet is 

empty, CalculateCps loops through all the subsets in the ArrayList subsetList passed to it as a parameter.  

For each of these subsets, CalculateCps goes through the four steps outlined in MallowsCpGreedy: 

Generate new data set, compute optimal parameters, calculate residual sum of squares, and compute Cp 

value-- this time, adding the Cp value itself and the entire subset in question to the CpList.  The algorithm 

then sorts the CpList by Cp values using Quicksort as in MallowsCpGreedy.  And finally, CalculateCps 

writes the results for all the subsets contained in CpList to a text file “CpTableAll.txt.” 

 

 

FindCIndex (Algorithm Details) 

 

The GetPValues function is first used to generate an ArrayList of probabilities calculated by a particular 

logistic regression system for the dependent variable for each of the data points. The FindCIndex algorithm 

then takes this ArrayList of P values and sorts them into “healthy” and “sick” bins based on the observed 

value for each data point.  A double for loop is then used to tally the number of concordant, discordant, and 

tied pairs among the results.  These counts are then used to calculate the C-Index for the particular logistic 

regression model in question.   

 

 

Procedure 

 

The Pima Indian Diabetes data from the UCI Machine Learning Repository was run through both the 

MallowsCpGreedy and MallowsCpAll algorithms.  Because the Mallow’s Cp is intrinsically a Best-Subset 

algorithm, the results were compared to verify whether a greedy algorithm can be used to lower 

computational cost without compromising accuracy. The GenerateFiles function was then used to generate 

datasets for all subsets returned by the MallowsCpGreedy algorithm.  Logistic regression was performed on 

these generated datasets using the Logistic Regression Calculating Page [9].  The C-Index for each of these 

logistic regression models are then calculated using the GetPValues and FindCIndex functions.  The 

Mallow’s Cp and logistic regression results are then compared. 

 

 

Results 

 

After running the MallowsCpGreedy algorithm, “CpTable.txt” contained the following results: 

 

Table 2: CpTable Output 

Value of p (Including 

Intercept) 

Number of Predictor 

Variables 

Variables in Subset Cp Value 

2 1 1 86.199071926954 
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3 2 1, 5 47.0498293176931 

4 3 1, 5, 0 19.365631341847 

5 4 1, 5, 0, 6 10.945482286911 

6 5 1, 5, 0, 6, 2 5.91402469860009 

7 6 1, 5, 0, 6, 2, 7 4.59629230089502 

8 7 1, 5, 0, 6, 2, 7, 4 5.01930150012004 

9 8 1, 5, 0, 6, 2, 7, 4, 3 7.00000000000068 

 

Table 3: Variable Mapping 

Number Corresponding Variable 

0 Number of times pregnant 

1 Glucose concentration after 2 hours in an oral glucose tolerance test 

2 Diastolic blood pressure (mm Hg) 

3 Triceps skin fold thickness (mm) 

4 2-Hour serum insulin (mu U/ml) 

5 Body mass index (weight in kg/(height in m)
2
 

6 Diabetes pedigree function 

7 Age (years) 

 

The Cp value that was the closest to its p value is the one corresponding to a subset of 5 selected predictors: 

Variables 1, 5, 0, 6, and 2.  There was an error margin here of only 1.4% between the Cp value 

5.91402469860009 and its p value of 6, while the error margin was 119% for the subset of size 5 (one less 

predictor), and 20% for the subset of size 7 (one more predictor).  When the MallowsCpAll algorithm was 

performed on the same dataset, the results were identical (See Appendix D).  That is, the same minimum Cp 

subsets for each subset size were chosen by the greedy and all-subsets algorithms, and moreover, the 

calculated Cp values were also identical for the two algorithms as expected.  

 

When the subsets from Table 2 were used to generate logistic regression models, the C-Indices calculated 

were as follows: 

 

Table 4: C-Indices from Logistic Regression Models 

 Number of Variables Subset C-Index 

1 1 0.960820895522388 

2 1, 5 0.962686567164179 

3 1, 5, 0 0.98134328358209 

4 1, 5, 0, 6 0.98134328358209 

5 1, 5, 0, 6, 2 0.988805970149254 

6 1, 5, 0, 6, 2, 7 0.988805970149254 

7 1, 5, 0, 6, 2, 7, 4 0.985074626865672 

8 1, 5, 0, 6, 2, 7, 4, 3 0.985074626865672 

 

The subset with 5 predictor variables remain the subset with the highest C-Index and hence the model that 

most closely fits the given data.  It also resulted in a tie with the subset of 6 variables when their C-Indices 

were compared.  

 

 

Discussion 

 

From the above results, it can be seen that the greedy version of the Mallow’s Cp algorithm did indeed 

produce identical results as the version that took into account all possible subsets.  By using the greedy 

algorithm, computational costs will be significantly reduced.   

 

The test using C-Indices from logistic regression also seems to confirm that the subset with variables 1, 5, 0, 

6, and 2 is the best subset of predictors that will created the best balance between the variance of the 

dependent variable and the omission bias.  First, the subset of 5 variables chosen by Mallow’s Cp resulted in 
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the maximum C-Index value of 0.988805970149254.  Then, even though the subset of size 6 resulted in the 

same C-Index value, we can still conclude from our data that the subset of 5 is our preferred set of 

predictors since adding variable 7 to the subset neither increased nor decreased the fit of our model.  In 

other words, including variable 7 neither provided more useful information nor took away from the existing 

model.  Therefore, all things being equal, it is generally preferable to go with the smaller subset (Reasons 

may include considerations such as reduced cost in data collection.) 

 

Nonetheless, if we were to maintain our assumption that the logistic regression model is more error free 

and hence more accurate than the OLS, then it may still be wise to take into consideration an apparent 

discrepancy between the Mallow’s Cp and logistic regression results: that while the logistic regression 

model indicated no difference between the inclusion and exclusion of Variable 7, the Mallow’s Cp 

algorithm did indicate a distinction.  This may be due to Mallow’s Cp’s being intrinsically aware of the 

advantages behind the exclusion of redundant variables.   However, further study of the Mallow’s Cp 

criterion will be necessary before such conclusions can be drawn.  Running a calibrated logistic regression 

on the Pima Indians Diabetes dataset, independent from OLS, may also be useful for verifying whether the 

same subset would be chosen by logistic regression alone.  Finally, cross-validation techniques can also be 

used increase the accuracy and to verify the results of both models [11].  

 

 

Conclusion 

 

As a result of this study, we can conclude that Mallow’s Cp  is a useful criterion to employ when generating 

models for variable selection based on Linear Least Squared regression.  In addition, a greedy version of 

the algorithm not only allowed the number of computations to decrease significantly, but also appear to 

produce identical results as when all possible subsets were generated and taken into account.  Finally, the 

Mallow’s Cp results were verified by C-Index calculations in conjunction with logistic regression modeling.  

However, further research on the handling of seemingly redundant variables by Mallow’s Cp, the use of an 

independent and calibrated logistic regression test, and the incorporation of techniques such as cross-

validation for increased accuracy and verification of results would be useful before further conclusion as 

drawn.  
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