

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139

16.01/16.02 Unified Engineering I, II Fall 2003

Problem Set 13

Name:	

Due Date: 12/2/03

	Time Spent (min)
F16	
F17	
M17	
M18	
Study Time	

Δ	n	n	Λ	117	10	ΔY	'n	ın	ts:
М		ш	u	uı	и.	t I	116	-11	15.

F16. $\phi_1(x,y)$ and $\phi_2(x,y)$ are known to be physically-possible flows (i.e. satisfy mass conservation), and their corresponding pressure fields $p_1(x,y)$ and $p_2(x,y)$ are known via the Bernoulli equation.

- a) A third flow is now defined by $\phi_3(x,y) = \phi_1 + \phi_2$. Explain how you would obtain its corresponding pressure field p_3 .
- b) Yet another flow $\phi_4 = \partial \phi_1/\partial x$ is defined. Is this a physically-possible flow?

F17. A vortex flow is given by

$$u_1(x,y) = \frac{y}{x^2 + y^2}$$
 $v_1(x,y) = \frac{-x}{x^2 + y^2}$

A uniform flow in the x-direction is given by

$$u_2(x,y) = V_{\infty} \qquad \qquad v_2(x,y) = 0$$

Superimpose these two flows, determine the pressure field, and find the x, y location of the point of maximum pressure.

Problem M17

In question M16. You had a state of strain:

Given a state of plane strain: $\varepsilon_{11} = -0.000200$, $\varepsilon_{22} = +0.000400$, $\varepsilon_{12} = -0.000200$, do the following:

- a) If a strain gauge rosette, with three gauges at 60° to each other was placed with one of the gauges orientated along the x_1 direction. What strains would the three gauges read?
- b) By representing the strains as a matrix calculate the principal strains and principal directions via the eigenvalue and eigenvectors of the matrix. Show that this is consistent with the values you calculated in M16.
- c) If the state of strain was no longer plane strain, and was now ϵ_{11} = -0.000200, ϵ_{22} = +0.000400, ϵ_{12} = -0.000200, ϵ_{33} = 0.000300, ϵ_{23} = 0, ϵ_{123} = 0. What would the principal strains now be?

Problem M18

Read Ashby and Jones Chapters 4, 5 and 6. Answer the following short questions (each answer should be one or two sentences only, the important task is the reading, the questions are to focus your attention):

- i) What are the two principal factors that contribute to the Young's modulus of a homogeneous material?
- ii) What is the glass transition temperature of a polymer and what is the underlying cause for this?
- iii) Why do metals tend to have higher densities than ceramics or polymers?
- iv) What is the relationship between the force exerted by an interatomic bond as a function of separation of the atoms and the potential energy associated with the same separation of the atoms?