1. Convert the following base 10 numbers into 8-bit 2's complement notation 0, -1, -12

To Compute 0

0 = 00000000

To Compute -1

Step 1. Convert 1 to binary 00000001

Step 2. Flip the bits 11111110

Step3. Add 1 11111111

Therefore -1 = 11111111

To Compute -12

Step 1. Convert 12 to binary 00001100

Step 2. Flip the bits 11110011

Step3. Add 1 11110100

Therefore -12 = 11110100

2. Perform each of the following additions assuming that the bit strings represent values in 2's complement notation. Identify the cases in which the answer is incorrect because of overflow.

Answer = 11110 Overflow = 0 ∴ Answer is correct

$$\begin{array}{r} & 01111 \\ + & 10001 \\ \hline & 100000 \end{array}$$

Answer = 00000Overflow = 1  $\therefore$  Answer is incorrect

$$\begin{array}{c} & 01110 \\ + & 01010 \\ \hline & 11000 \end{array}$$

Answer = 11000Overflow = 0 $\therefore$  Answer is correct

- 3. Write an algorithm to convert a negative decimal number into a binary number in 2's complement form. Assume that the number ranges from +127 to -128
  - 1. If the number is less than 0
    - a. Multiply by -1
    - b. Flip the bits by 'number XOR 0xff'
    - c. Add 1 to the result
  - 2. Convert the number into binary

Hint: You already know how to convert a positive decimal number into binary notation. Think about determining sign and inverting bit positions.

4. Implement your algorithm in Ada95. Turn in an electronic copy of your code listing and a hard copy of your code.

GNAT 3.13p (20000509) Copyright 1992-2000 Free Software Foundation, Inc.

Compiling: c:/docume~2/jk/desktop/16070/codeso~1/decimal\_to\_binary.adb (source file time stamp: 2003-09-17 11:09:18)

```
1. with Ada. Text Io;
2. use Ada. Text Io;
3.
4. with Ada.Integer_Text_Io;
5. use Ada.Integer_Text_Io;
7. procedure Decimal To Binary is
   -- bit-wise operations are only defined for modular types
10. type byte is mod 256;
11.
12. Number To Convert: integer;
13. Place Holder: Byte;
15. Binary_Number: String (1..8);
16. Count : Integer :=8;
17.
18.
19. begin
20. -- set the string to all zeroes
21. Binary_Number :="000000000";
22.
23. -- get the number to be converted
24. Put("Please enter an integer:");
25. Get(Number To Convert);
27. -- check if the number is negative. If it is,
28. -- convert it into positive
29. if Number_To_Convert < 0 then
30.
31.
       Number To Convert := -1 * Number To Convert;
32.
```

```
33.
       -- convert to modular type
34.
       Place_Holder := Byte'Val(Integer'Pos(Number_To_Convert));
35.
36.
       -- flip the bits
       Place_Holder := Place_Holder xor 2#11111111#;
37.
38.
       -- add 1
39.
       Place_Holder := Place_Holder + 2#1#;
40.
       -- reconvert to integer
41.
       Number_To_Convert := Integer'Val(Byte'Pos(Place_Holder));
42.
43. end if;
44.
45. -- decimal to binary conversion
46. -- fill in the bit pattern from left to right
47. loop
48.
       exit when Count = 0;
       -- if the remainder is non-zero, the bit is set to 1
49.
50.
       -- else the bit is 0
       if (Number_To_Convert mod 2) = 1 then
51.
         Binary_Number(Count) :='1';
52.
53.
         Binary_Number(Count) :='0';
54.
55.
       end if;
56.
57.
       Count := Count -1;
       Number_To_Convert := Number_To_Convert/2;
58.
59.
60. end loop;
61.
62. Put(Binary_Number);
63.
64. end Decimal_To_Binary;
65.
66.
67.
```

67 lines: No errors

1. How many bits do you need to represent a number in excess-16 format? What is the excess-16 representation of 12?

$$16 = 2^4 = 2^{N-1} \Rightarrow N = 5.$$

Five bits are needed to represent the number in excess-16 format.

Step 1. Add 16 to the number 16+12=28

Step 2. Convert to binary 12 in excess-16 = 11100

- 2. Convert 29/8 into binary 8-bit floating-point representation.
  - Step1. Set the sign bit to zero since number is positive

Step2. Convert the number into binary representation 29/8 = 3 + 5/8= 011.101

Step 3. Normalize the binary representation

$$0.11101 * 2^{2}$$

Step 4. Convert the exponent into excess-4

$$2 = 110$$

Step 5. Fill in the mantissa

Therefore 29/8 = 01101110

3. Sketch the basic von Neumann architecture and describe each component in a few lines.

The von Neumann architecture describes a computer with four main sections:

the Arithmetic and Logic Unit (ALU)

the control unit (CU)

the memory

the input and output devices (collectively termed I/O)

These parts are interconnected by a bundle of wires, a Bus.

The central processing unit (or CPU) is the part of a computer hat interprets and carries out the instructions contained in the software. In most CPUs, this task is divided between a CU that directs program flow and one or more execution units that perform operations on data. Almost always, a collection of Registers is included to hold operands and intermediate results.

The ALU is one of the core components of all CPUs. It is capable of calculating the results of a wide variety of common computations. The most common available operations are the integer arithmetic operations of addition, subtraction, and multiplication, the bitwise logic operations of **and**, **not**, **or** and **xor**, and various shift operations. The ALU takes as inputs the data to be operated on and a code from the CU indicating which operation to perform, and for output provides the result of the computation. In some designs it may also take as input and output a set of condition codes, which can be used to indicate cases such as carry-in or carry-out, overflow, or other statuses.

The CU the part of a CPU or other device that directs its operation. The outputs of the unit control the activity of the rest of the device.

The memory is a sequence of numbered "cells", each containing a small piece of information. The information may be an **instruction** to tell the computer what to do. The cell may contain **data** that the computer needs to perform the instruction. Any slot **may contain either**, and indeed what is at one time data might be instructions later. In general, memory can be rewritten over millions of times - it is a scratchpad rather than a stone tablet.

The size of each cell, and the number of cells, varies greatly from computer to computer, and the technologies used to implement memory have varied greatly from electromechanical relays, to mercury-filled tubes in which acoustic pulses were formed, to matrices of permanent magnets, to individual transistors, to integrated circuits with millions of capacitors on a single chip.

The bus is a bundle of wires that interconnect all the different parts of the computer.

4. Write an assembly language program (using the language described in the machine language handout) to add two positive numbers. Assume that the numbers are present in memory locations FEh and FFh. Turn in both a hard copy and an electronic copy of your code.

```
; Program to Add two positive numbers stored in FEh and FFh; Programmer: Joe B; Date Last Modified: September 15th 2003

load r1, [FEh]; load number in FEh
load r2, [FFh]; load the number in FFh
addi r3, r1,r2; perform the addition operation
store r3, [F0h]; store the result in F0h
halt; stop the program
```

- 1. Write an algorithm to implement the subtraction operation for two positive integers in assembly language.
  - 1. Let the numbers be A, B and the operation be A-B
  - 2. Convert A into binary
  - 3. Convert B into binary
  - 4. Compute 2's complement of B
    - i. Invert the bits in B using B xor 11111111
    - ii. Add 1 to B
  - 5. Add A and the 2's complement of B.
- 2. Implement your algorithm in the assembly language describe in the machine language handout. Test your implementation using the SimpleSim simulator.

TO HOMEWORK SOLUTIONS (WAITZ)

(1 of 2)

A) LEG Q W

(ISOTHERMAL SO LUGTED, Q=W)

2-3 + O (CONST. V HEATING)

3-4 O + (ADIABATIC EXPANSION)

(CONST. P COOLING) 4-1 -

B) LEG 1-2 Q=W W=RTLn (V2)

T.=300K, P.=100KPa => V.= 2T1 = 0.861 /kg

P2 = 10 :. P2 = 1000 kPa T2 = 300 k (Isotherwal

:. V2= RT2 = 0.0861

W=-198 kJ/kg g=-198 kJ/kg

DU= CVDT=0, Dh=CpDT=0

LEG 2-3 W=0 (CONST. VOLUME) .. DU= CVDT=9

T3=1500 Tz=300 :. Qu=716.5 (1200) = 859.8 /4

1 = 10035 (1200) = 1204.2 KJ/kg

8=857.8 kJ/kg T3=1500, V3=0.0861

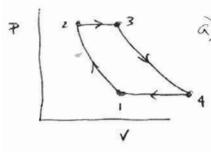
LE6 3-4 PV = CONST. V = 0 SO  $W = CV(T_4 - T_3)$   $V_3 = 0$  SO  $V_4 = 1.41$  m/kg

## TZ SOLUTIONS (WATTZ)

(1 OF 2)

MY DATA WERE OBTAINED 9/16/03 16:50 hrs.

AMBIENT AIR TEMP = 75°F = 297K
ATMOSPHERIC PRESCURE (ASSUMED) = 19tm = 101.3 KPQ


COMPRESSOR DELIVERY PRESSURE = 200 PSIG = 214.77 PSIA

GAGE

GAGE

(Febblication

SO PRESSURE RATIO =  $\frac{214.77}{14.77}$  = 14.54



a) ( P = 101.3 FR, T = 297K

(2) P2=14.54 (101.3) = 1473 kPa | /P2 7-1/6 T2 - 2)49 . T - 6

(P2) -1/8= T2 = 2.149 : T2=638K

3 constant pressure heating

:. P3=1473 kPa, T3=1400K (Given)

(4) q-s adiabatic expansion by P3=14.54 3. Pa=101.3 kPa

(PA) 8-1/8 = TA = 0.465 : T4=652K

b) THERMAL EFFICIENCY

 $W = C_{p} \left( T_{3} - T_{z} + T_{1} - T_{4} \right) = 1003.5 \left( 1400 - 638 + 297 - 652 \right) = 408 \frac{kT_{4}}{4}$ 

HOT DAY 
$$T_1 = Z73K$$

HOT DAY  $T_1 = Z03K$ 
 $N = 1 - \frac{273}{638} = 0.57$ 
 $N_{hot} = 1 - \frac{303}{638} = 0.525$ 

A) TOTAL GAS ENERGY FLOW = 66x10<sup>3</sup> BTUX = 69.63 MJ/S

ACTIVE LOAD = ZOMW

 $N = \frac{20}{69.63} = \frac{0.000}{0.000} = 0.287$ 

A VARIETY OF NON-IDEAL PROCESSES CAUSE THE EFFICIENCY TO BE SIGNIFICANTIAL LESS THAN THE VALUE OBTAINED FOIL THE IDEAL CYCLE.

(a) FOR PRESSURE RATIO OF 14.54, CALCULATED  $N_{hot} = 2.000$ 

MEASURED TO COMPR DISCHARGE TEMP) = 730°F

THIGHER THAN DOME MOREOFT

BUT NOTE THERE IS ALSO

SOME COOLING BETWEEN THE AMBIENT ( $N_{hot} = 1.000$ 

AND THE COMPRESSOR INLET

(COMP INLET TEMP = 62°F) WHICH WAS NOT ACCOUNTED FOR THIS GOR  $N_{hot} = 1.000$ 

GOR  $N_{hot} = 1.000$ 

SHOWS A SMALLER AT THAN IN PEAL DENCE

```
1 OF 2
T8 SOLUTIONS (WAITZ)
 a) P= 1×106 Pa, T=200K, C=50m m=100kg/s
     P2=5×10 Pa VIA A &-S ADUB. PROCESS :. PV= CONST.
C2: 50 mg
     P, V, = RT, = 0.052 m3 (R=260 J/kg-K)
      P_1V_1 = P_2V_2^{\gamma}, \gamma = \frac{C_P}{C_V} = 1.1 \gamma = 0.012 \frac{W^3}{Fq}
     SFEE -Ws = h2-h, + 62-62
           G g - W = U2-U, + G2 - 52
                    WE = R(T2-T1) = W-Ws
            W= - [Cv(Tz-Ti) + Ct2 - C12] Pzt=Tz=2308K
            W = -78.2 \frac{kJ}{ka}
            N = MW = -7.8 MW
            Wf = 260 (230.8-200) = 8 KT
            Wr = w.mt = 0.8 WM
             Ws= - (Cp(Tz-Ti) + Cz2 - Ci2 = W-WF
           Ws = -86.2 FT OR Ws = -8.62 MW
```

b) 
$$C_3 = 50 \text{ m/s}$$
,  $T_2 = 230.8 \text{ K}$ ,  $P_2 = 5 \times 10^6 \text{ Pa}$ 
 $C_3 = 100 \text{ m/s}$ ,  $T_2 = ?$ ,  $P_3 = 5 \times 10^6 \text{ Pa}$ 
 $Q = \text{MS} = C_p (T_3 - T_2) + \frac{C_1^2}{2} - \frac{C_1^2}{2}$  (NO SHAFT WORK BE)

 $1300 \times 10^3 = 2800 (T_3 - 230.8) + \frac{100^2}{2} - \frac{50^2}{2}$ 
 $T_3 = 693.7$ ,  $V_3 = \frac{RT_3}{P_3} = \frac{260 (693.7)}{6 \times 10^6} = 6036 \frac{\text{m}^3}{\text{Ky}}$ 
 $W_5 = 0$ 
 $W_4 = R(T_3 - T_2)$ 
 $W_5 = 1.2 \text{ MW}$ 
 $W_5 = 1.2 \text{ MW}$ 
 $W_5 = 1.2 \text{ MW}$ 
 $W_5 = 662 \text{ K}$ 
 $W_4 = 662 \text{ K}$ 
 $W_4 = R(T_4 - T_3) = 260 (602 - 693.7) = -8.2 \text{ kT/Kg}$ 
 $W_5 = -8.2 \text{ kT/Kg}$ 

2 OF 2

1F htc REDUCED 20% THEN hta REDUCED 20%

10 (GTTc)(0.8) = GTa + 
$$\frac{Ca^2}{2}$$

11 Ca =  $\sqrt{2C_{P}T_{rc}(0.8)} \left[1 - \left(\frac{Re}{Rc}\right)^{5.1/8}\right]$ 

12 Ca atm =  $1995 \text{ m/s}$ 

13 Ca space =  $\sqrt{2(1500)(3000)(0.8)} \left[1 - \left(\frac{1}{125}\right)^{1.2-1}\right]$ 

14 Ca space =  $\sqrt{2(1500)(3000)(0.8)} \left[1 - \left(\frac{1}{125}\right)^{1.2-1}\right]$ 

15 Ca space =  $\sqrt{2(1500)(3000)(0.8)} \left[1 - \left(\frac{1}{125}\right)^{1.2-1}\right]$ 

16 Ca space =  $\sqrt{2(1500)(3000)(0.8)} \left[1 - \left(\frac{1}{125}\right)^{1.2-1}\right]$