
C5 Solutions

1.	 Convert the following base 10 numbers into 8-bit 2’s complement notation
0, -1, -12

To Compute 0

0 = 00000000

To Compute –1

Step 1. Convert 1 to binary
00000001

Step 2. Flip the bits
11111110

Step3. Add 1
11111111

Therefore –1 = 11111111

To Compute –12

Step 1. Convert 12 to binary
00001100

Step 2. Flip the bits
11110011

Step3. Add 1
11110100

Therefore –12 = 11110100

2.	 Perform each of the following additions assuming that the bit strings represent
values in 2’s complement notation. Identify the cases in which the answer is
incorrect because of overflow.

1111

 + 	 1111

 11110

Answer = 11110

Overflow = 0

∴ Answer is correct

01111
+ 	 10001

 100000

Answer = 00000

Overflow = 1
∴ Answer is incorrect

01110
+ 	 01010

11000

Answer = 11000

Overflow = 0

∴ Answer is correct

3.	 Write an algorithm to convert a negative decimal number into a binary number in
2’s complement form. Assume that the number ranges from +127 to -128

1.	 If the number is less than 0
a.	 Multiply by –1
b.	 Flip the bits by ‘number XOR 0xff’
c.	 Add 1 to the result

2.	 Convert the number into binary

Hint: You already know how to convert a positive decimal number into binary
notation. Think about determining sign and inverting bit positions.

4.	 Implement your algorithm in Ada95. Turn in an electronic copy of your code
listing and a hard copy of your code.

GNAT 3.13p (20000509) Copyright 1992-2000 Free Software Foundation, Inc.

Compiling: c:/docume~2/jk/desktop/16070/codeso~1/decimal_to_binary.adb (source file time stamp: 2003-
09-17 11:09:18)

1. with Ada.Text_Io;
2. use Ada.Text_Io;
3.
4. with Ada.Integer_Text_Io;
5. use Ada.Integer_Text_Io;
6.
7. procedure Decimal_To_Binary is
8.
9. 	 -- bit-wise operations are only defined for modular types
10. type byte is mod 256;
11.
12. Number_To_Convert : integer;
13. Place_Holder: Byte;
14.
15. Binary_Number : String (1..8);
16. Count : Integer :=8;
17.
18.
19. begin
20. -- set the string to all zeroes
21. Binary_Number :="00000000";
22.
23. -- get the number to be converted
24. Put("Please enter an integer :");
25. Get(Number_To_Convert);
26.
27. -- check if the number is negative. If it is,
28. -- convert it into positive
29. if Number_To_Convert < 0 then
30.
31. Number_To_Convert := -1 * Number_To_Convert;
32.

33. -- convert to modular type
34. Place_Holder := Byte'Val(Integer'Pos(Number_To_Convert));
35.
36. -- flip the bits
37. Place_Holder := Place_Holder xor 2#11111111#;
38. -- add 1
39. Place_Holder := Place_Holder + 2#1#;
40. -- reconvert to integer
41. Number_To_Convert := Integer'Val(Byte'Pos(Place_Holder));
42.
43. end if;
44.
45. -- decimal to binary conversion
46. -- fill in the bit pattern from left to right
47. loop
48. exit when Count = 0;
49. -- if the remainder is non-zero, the bit is set to 1
50. -- else the bit is 0
51. if (Number_To_Convert mod 2) = 1 then
52. Binary_Number(Count) :='1';
53. else
54. Binary_Number(Count) :='0';
55. end if;
56.
57. Count := Count -1;
58. Number_To_Convert := Number_To_Convert/2;
59.
60. end loop;
61.
62. Put(Binary_Number);
63.
64. end Decimal_To_Binary;
65.
66.
67.

67 lines: No errors

C6

1.	 How many bits do you need to represent a number in excess-16 format? What is
the excess-16 representation of 12?

16 = 24 = 2 N-1 ⇒ N =5.

Five bits are needed to represent the number in excess-16 format.

Step 1. Add 16 to the number

16+12=28

Step 2. Convert to binary

12 in excess-16 = 11100

2.	 Convert 29/8 into binary 8-bit floating-point representation.

Step1. Set the sign bit to zero since number is positive

Step2. Convert the number into binary representation

29/8 	 = 3 + 5/8

= 011.101

Step 3. Normalize the binary representation

0.11101 * 22

Step 4.Convert the exponent into excess-4

2 = 110

Step 5. Fill in the mantissa

Therefore 29/8 = 01101110

3.	 Sketch the basic von Neumann architecture and describe each component in a few
lines.

The von Neumann architecture describes a computer with four main sections:
the Arithmetic and Logic Unit (ALU)
the control unit (CU)
the memory
the input and output devices (collectively termed I/O)

These parts are interconnected by a bundle of wires, a Bus.

The central processing unit (or CPU) is the part of a computer hat interprets and
carries out the instructions contained in the software. In most CPUs, this task is
divided between a CU that directs program flow and one or more execution units
that perform operations on data. Almost always, a collection of Registers is
included to hold operands and intermediate results.

The ALU is one of the core components of all CPUs. It is capable of calculating
the results of a wide variety of common computations. The most common
available operations are the integer arithmetic operations of addition, subtraction,
and multiplication, the bitwise logic operations of and, not, or and xor, and
various shift operations. The ALU takes as inputs the data to be operated on and a
code from the CU indicating which operation to perform, and for output provides
the result of the computation. In some designs it may also take as input and output
a set of condition codes, which can be used to indicate cases such as carry-in or
carry-out, overflow, or other statuses.
The CU the part of a CPU or other device that directs its operation. The outputs of
the unit control the activity of the rest of the device.

The memory is a sequence of numbered "cells", each containing a small piece of
information. The information may be an instruction to tell the computer what to
do. The cell may contain data that the computer needs to perform the instruction.
Any slot may contain either, and indeed what is at one time data might be
instructions later. In general, memory can be rewritten over millions of times - it
is a scratchpad rather than a stone tablet.
The size of each cell, and the number of cells, varies greatly from computer to
computer, and the technologies used to implement memory have varied greatly
from electromechanical relays, to mercury-filled tubes in which acoustic pulses
were formed, to matrices of permanent magnets, to individual transistors, to
integrated circuits with millions of capacitors on a single chip.

The bus is a bundle of wires that interconnect all the different parts of the

computer.

4.	 Write an assembly language program (using the language described in the
machine language handout) to add two positive numbers. Assume that the
numbers are present in memory locations FEh and FFh. Turn in both a hard copy
and an electronic copy of your code.

; Program to Add two positive numbers stored in FEh and FFh

; Programmer : Joe B

; Date Last Modified: September 15th 2003

load r1, [FEh] ; load number in FEh

load r2, [FFh] ;load the number in FFh

addi r3, r1,r2;perform the addition operation

store r3,[F0h]; store the result in F0h

halt; stop the program

C7

1.	 Write an algorithm to implement the subtraction operation for two positive
integers in assembly language.

1.	 Let the numbers be A, B and the operation be A-B
2.	 Convert A into binary
3.	 Convert B into binary
4.	 Compute 2’s complement of B

i.	 Invert the bits in B using B xor 11111111
ii.	 Add 1 to B

5.	 Add A and the 2’s complement of B.

2.	 Implement your algorithm in the assembly language describe in the machine
language handout. Test your implementation using the SimpleSim simulator.

; Program name : Subtraction using add only

;Programmer : Joe B

;Last Modified : Sep 16 2003

load R1,1 ;1 added for computing 2's complement

load R2,FFh ;mask for flipping the bits

load R3,first_number;

load R4, second_number;

xor R5, R4,R2 ; flip the 0's and 1's in the second number

addi R5,R5,R1 ; add 1 to the flipped bits to get the 2's complement

addi R5,R5,R3 ; add the numbers to obtain A - B

halt

first_number: db 8 ;A in A-B

second_number: db 5 ;B in A-B

