

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139

16.03/16.04 Unified Engineering III, IV Spring 2004

Problem Set 13

Name:

Due Date: 5/11/04

	Time Spent (min)
CP18-20	
S16	
S17	
S18	
Study	
Time	

Announcements: Q7P will be on Friday, May 7

CP18-20

The problems in this problem set cover lecture [C17 = quiz review], C18, C19, C20

1. The operation \oplus is defined for two Boolean variables A, B as follows:

$$A \oplus B = \overline{AB} + A\overline{B}$$

Draw the truth table for A⊕B

2. What are the minterms in the expression $A \oplus B \oplus C$?

Hint: Use a dummy variable D for $A \oplus B$, apply the Boolean algebra theorems, then replace D with $A \oplus B$ and repeat the process.

- 3. Convert the following English statements into formal propositions.
 - a. The killer touched both the candlestick and the wrench
 - b. There are exactly 2 sets of fingerprints on the candlestick.
 - c. Joe touched either the candlestick or the wrench, but not both.
 - d. George only touched the candlestick.
 - e. George saw Hannah touch the wrench.
 - f. Hannah touched all the weapons that George touched.
 - g. Hannah saw Joe touch the candlestick

Given that there is only one killer, use resolution to identify the killer.

4. Provide a **Direct Proof** of the following, where a, b, and c are integers

If a|b and b|c, then a|c

Hint: definition of " | " (Divisible) is given in lecture 20.

5. Prove using induction that P(n) = P(n-1) + P(n-2), where P(n) is a Fibonacci number.

Hint: What are Fibonacci numbers? That will help you identify the base case.

6. Prove using induction that if p does not divide any of the numbers $a_1, a_2, a_3, ..., a_n$ (i.e., p is not a common divisor for $a_1, a_2, a_3, ..., a_n$); then p does not divide $a_1 * a_2 * a_3 * ... * a_n$

Unified Engineering II

Spring 2004

Problem S16 (Signals and Systems)

Do problem 8.8 from Openheim and Willksy, Signals and Systems.

Note that this system implements a type of single sideband amplitude modulation.

Unified Engineering II

Spring 2004

Problem S17 (Signals and Systems)

Do problem 8.26 from Openheim and Willksy, Signals and Systems.

Unified Engineering II

Spring 2004

Problem S18 (Signals and Systems)

Do problem 8.34 from Openheim and Willksy, Signals and Systems.