
Introduction to Computers and 
Programming 

Prof. I. K. Lundqvist 

Lecture 14 
April 21 2004 

2 

Outline 

• Bhorbugs and Heisenbugs 

• Designing Large Programs 
– Software design quality 
– Modularity  
– Design by Contract 



3 

Real Bugs and Software Bugs 

adjust to the level of experience 
of the programmer 

invade the test environment 

replace previously caught bugs 

4 

Taxonomy of Bugs 

• Bugs  

• Bugs  

• Bugs  

• Reproducible bugs / Bohrbugs 

• Unreproducible / Heisenbugs 

• Tasking /Timing bugs 



5 

Reproducible Bugs/ Bhorbugs 
Always cause a failure and can be reproduced 

• explaining what should be happing 

• Verbalization often clarifies muddled thoughts 

• friend do a quick sanity check 

• change things, your actions 
should have a purpose 

6 

Heisenbugs 

A bug that disappears or 
when you are trying to track it down 

• 
platforms 

• 
program stop everything when one is violated 

• 

• 
the bug 

Try 

Have a 

Don’t randomly 

changes behavior 

Try to make the bug reproducible by switching 

Insert checks for invariants and have the 

Verify each layer with small, simple tests 

Find the smallest system which demonstrates 



7 

Tasking / Timing Bugs 

specified 

8 

Software Design Quality 

together with its application domain 
– 
– Quality predictors 

• Synchronization properties are not 

• Unconditional waits 

• Deadlocks and races 

• What is quality? 
– Construction quality 
– Aesthetic quality 
– Fit for purpose?  

• How can we measure quality? 

• Design quality : Fitness to purpose 
• Quality is a measure of Software 

Requirements analysis 



9 

Quality Predictors 

• Simplicity 

decorations 

10 

Quality Predictors 

• Modularity is a logical partitioning of 
the software design that allows complex 
software to be manageable for purposes 
of implementation and maintenance 

– Coupling 

– Cohesion 

– Meets its objectives, without any extra 

– Look for complexity 
• Control flow complexity 
• Information flow complexity 
• Name space complexity 

• Property of a collection of modules 

• Property or characteristic of an individual module 



11 

Coupling 

• 

or how interdependent they are 

two modules depends on their 
interface complexity 

12 

Classes of Coupling 

data 
stamp 
control 

common 
content 

low / best 

high / worst 

Coupling indicates: 
–how closely two modules interact 

–the degree of coupling between 



13 

Coupling 

• Data coupling: Two modules are data 
coupled if they communicate via a 
parameter (+++) 

• Stamp coupling: Two modules are stamp 
coupled if they communicate through a 
composite data structure (+) 

• Control coupling: Data from one module 
is used to control the direction of the 
execution in the other module (0) 

14 

Coupling 

• Common Coupling: Two modules are 
said to be common coupled when both 
reference the same shared/global data 

(-) 

• Content Coupling: Two modules are 
said to be content coupled when they 
share code (---) 



15 

Concept Question 

16 

Classes of Cohesion 

functional 
sequential 

communicational 
procedural 
temporal 
logical 

coincidental 

Degree of
cohesion 

Best / high 

Worst / low 

1. Not Coupled 

2. Are Content Coupled 

3. Stamp Coupled 

4. I still don’t understand coupling 

Test_stack.adb and my_stack package are: 



17 

Cohesion 

• Coincidental cohesion exists 
when subprograms in the module 
relate to each other very loosely, if 
at all (---) 

• Logical cohesion exists when all 
elements in the module perform 
similar operations (---) 

18 

Cohesion 

• Temporal cohesion exists when a 
module contains tasks that must 
be executed within the same time 
span (+) 

• Procedural cohesion exists when 
the subprograms in the module are 
part of the same algorithm (+) 



19 

Cohesion 

• Communication cohesion exists when 
all subprograms in the module 
reference or update the same data 
structure (+) 

• Sequential cohesion exists when 
elements of a module form different 
parts of a sequence, i.e., output from 
one element of the sequence is input to 
the next (++) 

20 

Cohesion 

• Functional cohesion exists when 
all subprograms in the module 
cooperate to achieve a single 
function (+++) 

Describe the functions in a single sentence 

Effects: initialize the data structures and initialize the screen display and 
initialize the history stack and initialize the layout defaults and 
display an introductory text 

Effects: if x =0 then returns size(a[]) x=1 then returns sum(a[]) 
x=2 then returns mean(a[]) x=3 then returns median(a[]) 

else if 
else if else if 



21 

Concept Question 
my_stack package has: 

1. Logical cohesion 

2. Functional cohesion 

3. No Cohesion 

4. I still don’t understand cohesion 


