Introduction to Computers and Programming

Prof. I. K. Lundqvist

Reading: B pp. 74-98

Lecture 6 Sept 15 2003

Recap

• Number representation

- Integers

- The Binary system
- How to represent negative numbers

- Real numbers

- Why floating point numbers
- How FPs are represented in a computer

How Computers Work

- von Neumann architecture
 - Describes a computer with 4 main sections
 - The Arithmetic Logic Unit (ALU)
 - The Control Unit
 - The memory
 - The input and output devices (I/O)
 - The parts are connected by a bus ("bundle of wires")

Computer Architecture

computer architecture = computer organization + instruction set architecture

von Neumann architecture

Computer Organization

- **CPU**: central processing unit
 - Interprets and carries out the instructions contained in the software
 - Arithmetic Logic Unit: performs operations such as addition, subtraction, bit-wise AND, OR,
 ...
 - Control Unit: "directs the CPU's operations" fetches instructions from memory, decodes them and produces signals which control the other parts of the computer

Example 1: Adding values stored in memory

- Get one of the values to be added from memory and place it in a register
- Get the other value to be added from memory and place it in another register
- Activate the addition circuitry with the registers used in 1 and 2 as inputs and another register designated to hold the result
- 4. Store the result in memory
- 5. Stop

Storage

Input and Output

- Allows the computer to obtain information from the outside world, and send results of its work back again
- Device controllers

Instruction Set Architecture

- **ISA**: spec. detailing the commands a CPU should be able to understand and execute
 - Operations
 - add, sub, mult, ..., how is it specified
 - Number of operands
 - 0, 1, 2, 3
 - Operand storage
 - where besides memory
 - Memory address
 - how is memory location specified
 - Type and size of operands
 - byte, integer, float, ...

- ...

Instruction Set

Software

Instruction Set

Hardware

- The collection of *machine language* instructions that a processor understands
- Instructions are bits with well defined fields

Machine Language

RISC / CISC

• Instructions in a machine's repertoire can be classified into 3 categories

- Data transfer

- LOAD / STORE
- I/O instructions

- Arithmetic/logic

 Instructions that tell the CU to request an activity within the ALU (+, -, ..., XOR, ..., SHIFT, ROTATE)

- Control

- Instructions that direct the execution of the program
 - Conditional jumps
 - Unconditional jumps

Dividing values stored in memory

STEP 1.	LOAD a register with a value from memory.
STEP 2.	LOAD another register with another value from memory.
STEP 3.	If this second value is zero, JUMP to step 6.
STEP 4.	Divide the contents of the first register by the second register and leave the result in a third register.
STEP 5.	STORE the contents of the third register in memory.
STEP 6.	STOP.

The architecture of the machine described in Appendix C

