Introduction to Computers and Programming

Prof. I. K. Lundqvist

Lecture 9 April 7 2004

- Data structures
- Algorithms

Code Comparison

 How many have a solution that runs in linear time?

Code Comparison

 How many have a solution that runs in constant time? $\frac{N^{*}(N+1)}{2}$ with Ada.Integer_Text_Io, Ada.Text_Io; use Ada.Integer_Text_Io, Ada.Text_Io; procedure Calcsum is : Integer; Ν Total_Sum : Integer; begin Put_Line("Enter an Integer: "); Get(N); Total_Sum := 0; Total_Sum := (N * (N + 1)) / 2; Put(Total_Sum); end;

5

Complexity Analysis

- Complexity: rate at which storage or time grows as a function of the problem size
 – Growth depends on compiler, machine, ...
- Asymptotic analysis: describes the inherent complexity of a program, independent of machine and compiler
 - Idea: as problem size grows, the complexity can be described as a simple proportionality to some known function.

• O(N^M)

• O(M^N)

• O(log N)

Or a combination of these

7

O(1)

- Constant time or space, independently of what input we give to the algorithm
- Examples:
 - Access element in an array
 - Retrieve the first element in a list
 - ...

O(N)

- We have to search through all existing elements to find that the element we are looking for does not exist
- Examples:
 - Searching for element in a list that does not exist
 - Searching through a Binary Tree of size N where a value does not exist

9

Binary Search

```
Input:
    Array to search, element to search for
Output:
    Index if element found, -1 otherwise
Algorithm:
    Set Return_Index to -1;
    Set Current Index to (UB + LB) / 2
    Loop
      if the LB > UB
             Exit;
       if Input_Array(Current_Index) = element
              Return_Index := Current_Index
              Exit;
       if Input_Array(Current_Index) < element</pre>
          LB := Current_Index +1
      else
          UB := Current_Index - 1
   Return Return_Index
```

13

$O(N^{M})$

```
N := 1;
   while N > 0 loop
      Put("How many repetions? ");
      Get(N);
      X := 0;
      for I1 in 1..N loop
         for I2 in 1..N loop
            for I3 in 1...N loop
               for I4 in 1..N loop
                  for I5 in 1..N loop
                      X := X + 1;
                  end loop;
               end loop;
            end loop;
         end loop;
      end loop;
      Put(X);
      New_Line;
end loop;
```

$O(M^N)$

Asymptotic Analysis: Big-O

Mathematical concept that expresses
 "how good" or "how bad" an algorithm is

 $\begin{array}{l} \textbf{Definition: } \textbf{T}(n) = O(f(n)) - \textit{"T of } n \textit{ is in Big-Oh of } f \textit{ of } n" \\ \textbf{iff there are constants } \textbf{c} \textit{ and } \textbf{n}_{\textbf{0}} \textit{ such that:} \\ \textbf{T}(n) \leq cf(n) \textit{ for all } n \geq n_0 \end{array}$

Usage: The algorithm is in $O(n^2)$ in [best, average, worst] case.

Meaning: For all data sets big enough (i.e., $n > n_0$), the algorithm always executes in less than cf(n) steps in [best, average, worst] case.

Big-O is said to describe an "upper bound" on the complexity.

17

Big-O Examples

Finding value X in an array (average cost).

 $T(n) = c_s n/2.$ T(n) = O(f(n)) iff $T(n) \le cf(n) \text{ for all } n \ge n_0$

For all values of n > 1, $c_s n/2 <= c_s n$.

Therefore, by the definition, $\mathbf{T}(n)$ is in O(n) for $n_0 = 1$ and $c = c_s$.

Big-O Example

 $\mathbf{T}(n) = c_1 n^2 + c_2 n$ in average case.

 $\begin{array}{l} \boldsymbol{T}(n) \ = \ O(f(n)) \ \text{iff} \\ \boldsymbol{T}(n) \ \leq \ cf(n) \ \text{for all} \ n \ge n_0 \end{array}$

 $c_1 n^2 + c_2 n < = c_1 n^2 + c_2 n^2 < = (c_1 + c_2) n^2$ for all n > 1.

 $\mathbf{T}(n) \le cn^2$ for $c = c_1 + c_2$ and $n_0 = 1$. Therefore, $\mathbf{T}(n)$ is in $O(n^2)$ by the definition

19

Big-O Simplifications

O(2*N)	Same as	O(N)
O(5*3 ^N)	Same as	O(3 ^N)
O(4711)	Same as	O(1)
O(N+1)	Reduces to	O(N)
O(N ² +logN)	Reduces to	O(N ²)
$O(N*logN+2^{N}+50000)$	Reduces to	O(2 ^N)

Big-O Simplifications

O(N+P+Q)	Same as	O(N+P+Q)
O(5*N ³ + 7N+ 2P+Q*R)	Reduces to	$O(5*N^3+2P+Q*R)$
$O(N^2 \log P + N)$	Same as	$O(N^2 \log P + N)$
$O(N*M+N^2)$	Same as	$O(N*M+N^2)$

21

Faster Computer or Algorithm?

The old computer processes 10,000 instructions per hour What happens when we buy a computer 10 times faster?

T (<i>n</i>)	п	n'	n'/n
10 <i>n</i>	1,000	10,000	10
20 <i>n</i>	500	5,000	10
5 <i>n</i> log <i>n</i>	250	1,842	7.37
2 <i>n</i> ²	70	223	3.16
2 ⁿ	13	16	