16.06 Principles of Automatic Control Recitation 5

Problem 1.

Sketch the positive (180°) and negative (0°) root locus for following system:

$$G(s) = \frac{s-2}{(s^2+1)(s+2)(s+5)}$$

.

Poles are at $s = \pm j, -2, -5$.

Zero are at s=2.

$$\alpha = \frac{(0+0-2-5)-(2)}{4-1} = -3$$

Asymptotes are at angles of $\pm 60^{\circ}$, 180° for positive locus.

Asymptotes are at angles of $\pm 120^{\circ}$, 0° for negative locus.

Angle of departure from pole at s = +j for positive locus is

$$\begin{split} \Psi_{\rm dep} &= \sum \phi - \sum \psi + 180 \\ &= \tan^{-1} \left(\frac{1}{-2}\right) - \tan^{-1} \left(\frac{1}{2}\right) - \tan^{-1} \left(\frac{1}{5}\right) - \tan^{-1} \left(\frac{2}{0}\right) + 180^{\circ} \\ &= 153.4^{\circ} - 26.6^{\circ} - 113^{\circ} - 90^{\circ} + 180^{\circ} = 205.6^{\circ} \end{split}$$

For the negative locus the departure angle is

$$\Psi_{\text{dep}} = \tan^{-1}\left(\frac{1}{-2}\right) - \tan^{-1}\left(\frac{1}{2}\right) - \tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{2}{0}\right) = 25.6^{\circ}$$

Problem 2.

Sketch the negative root locus for the following system:

$$G(s) = \frac{s+4}{s(s+2)(s+3)(s+8)}$$

Poles are at s = 0, -2, -3, -8.

Zero are at s = -4.

$$\alpha = \frac{(0-2-3-8)-(-4)}{3} = -3$$

Asymptotes are at 0° , $\pm 120^{\circ}$.

The zero attracts the locus, so it actually crosses the asymptotes, which is permissible.

MIT OpenCourseWare http://ocw.mit.edu

16.06 Principles of Automatic Control Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.