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Lecture L22 - 2D Rigid Body Dynamics: Work and Energy 

In this lecture, we will revisit the principle of work and energy introduced in lecture L11-13 for particle 

dynamics, and extend it to 2D rigid body dynamics. 

Kinetic Energy for a 2D Rigid Body 

We start by recalling the kinetic energy expression for a system of particles derived in lecture L11, 

1 2 1 2T =
2
mvG + 2 

miṙi
� , 

n� 

i=1 

where n is the total number of particles, mi denotes the mass of particle i, and r�i is the position vector of 

particle i with respect to the center of mass, G. Also, m = i
n 
=1 mi is the total mass of the system, and 

vG is the velocity of the center of mass. The above expression states that the kinetic energy of a system of 

particles equals the kinetic energy of a particle of mass m moving with the velocity of the center of mass, 

plus the kinetic energy due to the motion of the particles relative to the center of mass, G. 

For a 2D rigid body, the velocity of all particles relative to the center of mass is a pure rotation. Thus, we 

can write 

ṙ�i = ω × r�i. 

Therefore, we have 
n n n� 1 � 1 � 1 

2 
miṙi

�2 =
2 
mi(ω × r�i) · (ω × ri

�) = 
2 
miri

�2ω2 , 
i=1 i=1 i=1 

where we have used the fact that ω and r�i are perpendicular. The term i
n 
=1 miri

�2 is easily recognized as 

the moment of inertia, IG, about the center of mass, G. Therefore, for a 2D rigid body, the kinetic energy 

is simply, 

T =
1 
mv 2 +

1 
IGω2 . (1)

2 G 2 
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When the body is rotating about a fixed point O, we can write I 2
O = IG + mrG and 

1 2 1 2 1 
T =

2 
mvG + 

2
(IO − mrG)ω2 =

2 
IOω2 , 

since vG = ωrG.


The above expression is also applicable in the more general case when there is no fixed point in the motion,


provided that O is replaced by the instantaneous center of rotation. Thus, in general,


1 
T = IC ω

2 .
2 

We shall see that, when the instantaneous center of rotation is known, the use of the above expression does 

simplify the algebra considerably. 

Example Rolling Cylinder 

Consider the cylinder rolling without slipping on a flat plane. The friction between the plane and the 

cylinder insure the no-slip condition, but the friction force does no work. The no-slip condition requires 

ω = −VG/R0). We take the cylinder to have its center of mass at the center of the cylinder but we allow the 

mass distribution to be non-unform by allowing a radius of gyration kG. For a uniform cylinder kG = R0/
√

2 

The total kinetic energy, from equation (1) is given by 

1 1 1 1 
GV 2 m(R2 IC ω

2T = mV 2 + mk2 
G/R2 = + k2 )ω2 = (2)

2 G 2 0 2 0 G 2 

where the parallel axis theorem has been used to relate the moment of inertia about the contact point C to 

the moment of inertia about the center of mass. 
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Work 

External Forces 

Since the body is rigid and the internal forces act in equal and opposite directions, only the external forces 

applied to the rigid body are capable of doing any work. Thus, the total work done on the body will be 

n n � (ri )2 

(Wi)1−2 = F i · dr , 
i=1 i=1 (ri)1 

where F i is the sum of all the external forces acting on particle i. 

Work done by couples 

If the sum of the external forces acting on the rigid body is zero, it is still possible to have non-zero work. 

Consider, for instance, a moment M = Fa acting on a rigid body. If the body undergoes a pure translation, 

it is clear that all the points in the body experience the same displacement, and, hence, the total work done 

by a couple is zero. On the other hand, if the body experiences a rotation dθ, then the work done by the 

couple is 
a a 

dW = F dθ + F dθ = F adθ = Mdθ . 
2 2 

If M is constant, the work is simply W1−2 = M(θ2 − θ1). In other words, the couples do work which results 

in the kinetic energy of rotation. 

Conservative Forces 

When the forces can be derived from a potential energy function, V , we say the forces are conservative. In 

such cases, we have that F = −�V , and the work and energy relation in equation 4 takes a particularly 

simple form. Recall that a necessary, but not sufficient, condition for a force to be conservative is that it 

must be a function of position only, i.e. F (r) and V (r). Common examples of conservative forces are gravity 

(a constant force independent of the height), gravitational attraction between two bodies (a force inversely 

proportional to the squared distance between the bodies), and the force of a perfectly elastic spring. 
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The work done by a conservative force between position r1 and r2 is 

r2 

W1−2 = F dr = [−V ]r
r

1

2 = V (r1) − V (r2) = V1 − V2 .· 
r1 

Thus, if we call W NC the work done by all the external forces which are non conservative, we can write the 1−2 

general expression, 

T1 + V1 + W NC .1−2 = T2 + V2 

Of course, if all the forces that do work are conservative, we obtain conservation of total energy, which can 

be expressed as, 

T + V = constant . 

Gravity Potential for a Rigid Body 

In this case, the potential Vi associated with particle i is simply Vi = migzi, where zi is the height of particle 

i above some reference height. The force acting on particle i will then be F i = −�Vi. The work done on 

the whole body will be 

n � 2 n n� r � �i 

F i · dri = ((Vi)1 − (Vi)2) = mig((zi)1 − (zi)2 = V1 − V2 , 
1 

i=1 ri i=1 i=1 

where the gravity potential for the rigid body is simply, 

n

V = migzi = mgzG , 
i=1 

where zG is the z coordinate of the center of mass. It’s obvious but worth noting that because the gravitational 

potential is taken about the center of mass, the inertia plays no role in determining the gravitational potential. 

Example Cylinder on a Ramp 

We consider a homogeneous cylinder released from rest at the top of a ramp of angle φ, and use conservation 

of energy to derive an expression for the velocity of the cylinder. 

Conservation of energy implies that T +V = Tinitial +Vinitial. Initially, the kinetic energy is zero, Tinitial = 0. 

Thus, for a later time, the kinetic energy is given by 

T = Vinitial − V = mgs sin φ , 
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where s is the distance traveled down the ramp. The kinetic energy is simply T = 1 IC ω
2

2 , where IC = 

IG + mR2 is the moment of inertia about the instantaneous center of rotation C, and ω is the angular 

velocity. Thus, IC ω
2 = 2mgs sin φ , or, 

2gs sin φ 
v 2 = ,

1 + (IG/mR2) 

since ω = v/R. For the general case of a cylinder with the center of mass at the center of the circle but an 

uneven mass distribution, we write T = 1 m(1 + k2 /R2), where the effect of mass distribution is captured 2 G

in kG; the smaller kG, the more concentrated the mass about the center of the cylinder. Then 

v 2 =
2gssinφ 

(3)
1 + k2 /R2 

G

This equation shows that the more the mass is concentrated towards the center of the cylinder (kG small), 

a higher velocity will be reached for a given height, i.e less of the potential energy will go into rotational 

kinetic energy. 

Equilibrium and Stability 

If all the forces acting on the body are conservative, then the potential energy can be used very effectively 

to determine the equilibrium positions of a system and the nature of the stability at these positions. Let us 

assume that all the forces acting on the system can be derived from a potential energy function, V . It is 

clear that if F = −�V = 0 for some position, this will be a point of equilibrium in the sense that if the 

body is at rest (kinetic energy zero), then there will be no forces (and hence, no acceleration) to change 

the equilibrium, since the resultant force F is zero. Once equilibrium has been established, the stability of 

the equilibrium point can be determine by examining the shape of the potential function. If the potential 

function has a minimum at the equilibrium point, then the equilibrium will be stable. This means that if 

the potential energy is at a minimum, there is no potential energy left that can be traded for kinetic energy. 

Analogously, if the potential energy is at a maximum, then the equilibrium point is unstable. 

Example Equilibrium and Stability 

A cylinder of radius R, for which the center of gravity, G, is at a distance d from the geometric center, C, 

lies on a rough plane inclined at an angle φ. 
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Since gravity is the only external force acting on the cylinder that is capable of doing any work, we can 

examine the equilibrium and stability of the system by considering the potential energy function. We have 

zC = zC0 − Rθ sin φ, where zC0 is the value of zC when θ = 0. Thus, since d = |CG|, we have, 

V = mgzG = mg(zC + d sin θ) = mg(zC0 − Rθ sin φ + d sin θ) . 

The equilibrium points are given by �V = 0, but, in this case, since the position of the system is uniquely 

determined by a single coordinate, e.g. θ, we can write 

dV �V = 
dθ 

�θ , 

which implies that, for equilibrium, dV/dθ = mg(−R sin φ + d cos θ) = 0, or, cos θ = (R sin φ)/d. If 

d < R sin φ, there will be no equilibrium positions. On the other hand, if d ≥ R sin φ, then θeq. = 

cos−1[(R sin φ)/d] is an equilibrium point. We note that if θeq. is an equilibrium point, then −θeq. is also an 

equilibrium point (i.e. cos θ = cos(−θ)). 

In order to study the stability of the equilibrium points, we need to determine whether the potential energy 

is a maximum or a minimum at these points. Since d2V/dθ2 = −mgd sin θ, we have that when θeq. < 0, 

then d2V/dθ2 > 0 and the potential energy is a minimum at that point. Consequently, for θeq. < 0, the 

equilibrium is stable. On the other hand, for θeq. > 0, the equilibrium point is unstable. 

Example Oscillating Cylinder and Ellipse 

Consider the solid semi-circle at rest on a flat plane in the presence of gravity. At rest, it is in equilibrium since 

the gravitational moments balance. We consider that it tips and rolls, keeping the no-slip condition satisfied. 

This motion results in a vertical displacement of the center of mass, Δy and a horizontal displacement of 

the center of mass Δx, where Δy and Δx can be found from the geometry. 
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To determine the stability, we consider the change in potential energy, V (θ). Only the vertical displacement 

of the center of mass contributes to a change in potential. If we expand the potential V (θ) for small θ, we 

will get an expression V (θ) = Aθ2 . (Recall that for the pendulum, V (θ) = mgLθ2/2.) The question of 

stability depends upon the sign of A. If A is positive, the system is stable; if A is negative, the system is 

unstable. 

For positive A, the next step is to determine the frequency of oscillation. It is obvious that the semi-circle will 

oscillate about is center of symmetry. To determine the frequency, we need to identify TMAX , the maximum 

value of kinetic energy. The system has both translation and rotational kinetic energy, and both will be at 

their maximum values when the system moves through the point of symmetry, θ = 0. 

The translational kinetic energy will reflect the maximum velocity of the center of mass; the rotation kinetic 

energy, the maximum value of the angular velocity as the system moves through the point of symmetry. 

We now consider the two systems shown in the figure. These are simply semi-ellipses resting on a flat plane. 
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Again, the point of symmetry will be an equilibrium point since the gravitational moments will balance. 

But the question of stability relates to whether the center of mass moves up or down as θ increases. We 

have V (θ) = Aθ2, with stability for A > 0 and instability for θ < 0. We feel instinctively, that one of these 

systems–the tall skinny one– is unstable. This implies that it will not remain balanced about the equilibrium 

point, but will tip over. 

ADDITIONAL READING 

J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition 

6/6, 6/7 
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Recall that the work done by a force, F , over an infinitesimal displacement, dr, is dW = F  dr. If F total 
i ·

denotes the resultant of all forces acting on particle i, then we can write, 

dWi = F total
i · dri = mi 

d

dt 
vi · dri = mivi · dvi = d(

1
2 
mivi 

2) = d(Ti) , 

where we have assumed that the velocity is measured relative to an inertial reference frame, and, hence, 

F total = miai . The above equation states that the work done on particle i by the resultant force F total isi i 

equal to the change in its kinetic energy.


The total work done on particle i, when moving from position 1 to position 2, is
� 2 

(Wi)1−2 = dWi , 
1 

and, summing over all particles, we obtain the principle of work and energy for systems of particles, 
n

T1 + (Wi)1−2 = T2 . (4) 
i=1 

The force acting on each particle will be the sum of the internal forces caused by the other particles, and 

the external forces. We now consider separately the work done by the internal and external forces. 

Internal Forces 

We shall assume, once again, that the internal forces due to interactions between particles act along the lines 

joining the particles, thereby satisfying Newton’s third law. Thus, if f ij denotes the force that particle j 

exerts on particle i, we have that f ij is parallel to ri − rj , and satisfies f ij = −f ji. 

Let us now look at two particles, i and j, undergoing an infinitesimal rigid body motion, and consider the 

term, 

f ij · dri + f ji · drj . (5) 

If we write drj = dri + d(rj − ri), then, 

f ij · dri + f ji · drj = f ij · (dri − dri) − f ij · d(rj − ri) = −f ij · d(rj − ri). 

It turns out that f ij d(rj − ri) is zero, since d(rj − ri) is perpendicular to rj − ri, and hence it is also · 

perpendicular to f ij . The orthogonality between d(rj −ri) and rj −ri follows from the fact that the distance 

between any two particles in a rigid body must remain constant (i.e. (rj − ri) (rj − ri) = (rj − ri)2 = const; · 

thus differentiating, we have 2d(rj − ri) (rj − ri) = 0). · 
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�We conclude that, since all the work done by the internal forces can be written as a sum of terms of the 

form 5, then the contribution of all the internal forces to the term n (Wi)1−2 in equation 4, is zero. i=1
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