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Lecture L28 - 3D Rigid Body Dynamics: Equations of Motion;

Euler’s Equations


3D Rigid Body Dynamics: Euler’s Equations 

We now turn to the task of deriving the general equations of motion for a three-dimensional rigid body. 

These equations are referred to as Euler’s equations. The governing equations are those of conservation of 

linear momentum L = MvG and angular momentum, H = [I]ω, where we have written the moment of 

inertia in matrix form to remind us that in general the direction of the angular momentum is not in the 

direction of the rotation vector ω. Conservation of linear momentum requires 

L̇ = F (1) 

Conservation of angular momentum, about a fixed point O, requires 

Ḣ0 = M (2) 

or about the center of mass G 

ḢG = M G (3) 

In our previous application of these equations, we specified the motion and used the equations to specify 

what moments would be required to produce the prescribed motion. In this more general formulation, we 

allow the body to execute free motions, possibly under the action of external moments. We consider the 

general motion of a body about its center of mass, first examining this in a inertial reference frame. 
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At an instant of time, we can calculate the angular momentum of the body as H = [I]ω. One possible 

method to obtain the moments and the motion of the body is to perform our analysis in this inertial 

coordinate system. We would of course align our coordinate system initially with the principal axes of the 

body. We could then write 

MG = ḢG = d/dt([I]ω) = [İ]ω + [I]ω̇ (4) 

This would be a appropriate approach but the difficulty is keeping track of [İ] in the inertial coordinate 

system. The initial inertial axis, even if principal axis, will not remain principal axis, and the inertia ”seen” 

in this coordinate system will vary with time. So unless we are considering the motion of a sphere, for 

which all axis are principal and the inertia tensor is constant about all axis, we cannot get very far with this 

approach. 

Body-Fixed Axis 

We formulate the governing equations of motion in an axis system fixed to the body, paying the price for 

keeping track of the motion of the body in order to have the inertia tensor remain independent of time in 

our reference frame. Given our earlier discussion of terms added to the description of motion in a rotating 

and accelerating coordinate system, it may seem surprising that we can do this easily, but the statement of 

conservation of angular moment about the center of mass, or about a fixed point of instantaneous rotation 

holds if we include the changes in angular momentum arising from Coriolis Theorem. The general body is 

shown in the figure. We fix the x, y, z axis to the body and instantaneously align them with x, y, z. Referring 
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to the figure, we see the components of ω,—- ω1, ω2 and ω3—- and the components of the angular moment 

vector H, which in general is not aligned with the angular velocity vector. We also see the vectors ω2j + ω3k 

applied to the x axis, with corresponding components of ω sketched at the y and z axes. At this instant 

of time, the change in H will be due to actual time rate of change Ḣ plus the effect of the instantaneous 

rotation of the x axis due to ω: the change in H due to the instantaneous rotation of the coordinate system 

is 

Ḣ = [I]ω̇ + ω × H (5) 

Equating the change in angular momentum to the external moments, we have the statement of conservation 

of angular momentum in body-fixed axes. 

Mx = Ḣx − Hyωz + Hz ωy (6) 

My = Ḣy − Hz ωx + Hxωz (7) 

Mz = Ḣz − Hxωy + Hyωx (8) 

This particular form of the equations of motion is valid for any set of body-fixed axes. If the axes chosen are 

principal axes, then we may express the conservation of angular momentum in terms of moments of inertia 

about the principle axes, 

Mx = Ixxω̇x − (Iyy − Izz)ωyωz (9) 

My = Iyy ω̇y − (Izz − Ixx)ωz ωx (10) 

Mz = Izz ω̇z − (Ixx − Iyy)ωxωy (11) 

These equations are called Euler’s equations. They provide several serious challenges to obtaining the general 

solution for the motion of a three-dimensional rigid body. First, they are non-linear (containing products of 

the unknown ω’s). This means that elementary solutions cannot be combined to provide the solution for a 

more complex problem. But a more fundamental difficulty, is that we do not know the location of the 

axis system, x, y and z. Recall that since the axes are fixed to the body, we are committed to follow the 

body as it rotates in order to use these equations to obtain a solution. Thus, we must develop a method 

to follow the changes in axis location as the body rotates. Before turning to this problem, we examine a 

situation where we know the location of the axis, at least approximately. 

Stability of Free Motion about a Principal Axis 

Consider a body rotating about the z axis—-a principal axis—- with angular velocity ωz . Without loss of 

generality, we may consider this to be a rectangular block. We take advantage of the fact that we know to 
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a good approximation the axis of rotation, at least initially. We examine the question of stability to small 

perturbations, rotations about the x and y axis of magnitude ωx and ωy where ωx << ωz and ωy << ωz . 

The moments of inertia about the x, y and z axes are Ixx, Iyy and Izz ; we say nothing about the magnitudes 

of these inertias at this point. 

Assume a small impulsive moment that initiates a small rotation about the x and y axes and thereafter the 

motion proceeds with no applied external moments. For this case, Euler’s equations become 

0 = Ixxω̇x − (Iyy − Izz )ωyωz (12) 

0 = Iyy ω̇y − (Izz − Ixx)ωzωx (13) 

0 = Izz ω̇z − (Ixx − Iyy)ωxωy (14) 

The z equation contains the product of two small terms in contrast to the other two equations where the size 

of the terms is comparable–as far as we can tell. We therefore note that since Izz ω̇z = (Ixx − Iyy)ωxωy with 

both ωx and ωy being small quantities, we may take ωz as constant, equal to some ω. We now differentiate 

both equations with time, and substitute to obtain an equation for ωx. (We could do this as well for ωy with 

the same result.) 

Ixx ̈ωx − 
(Iyy − (Izz )(Izz − Ixx) 

Iyy 
ω2ωx = 0 (15) 

or 

ω̈x − Aωx = 0 (16) 

The solution to this differential equation for ωx(t) is 

ωx(t) = Be
√

At + Ce−
√

At (17) 

The stability of the motion is determined by the sign of A. If A is positive, an exponential divergence 

will result, and the initial small perturbation in ωx will grow without bound, as least as predicted by small 
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perturbation analysis. If the sign of A is negative, oscillatory motion of ωx (and ωy) will result, and the 

motion is stable. 

Examining A = (Iyy −Izz )(Izz −Ixx) , we see that the condition for A to be positive is that Izz is intermediate Iyy 

between Ixx and Iyy. That is Ixx < Izz < Iyy or Iyy < Izz < Ixx. We conclude that a body rotating about 

an axis where the moment of inertia is intermediate between the other two inertias, is unstable. Also, that 

rotation about either the largest or smallest inertias is stable. This consideration relates to stability of a 

rotating body as predicted from Euler’s equation; we have already examined the stability of rotation about 

the smallest inertia axis and concluded that if energy is dissipated, that motion is unstable. 

Stability of a Gyrostat 

The analysis of the proceeding section can easily be extended to a more important, more useful and more 

complex configuration: the gyrostat satellite. A gyrostat consists of a spinning body which contains within 

itself another spinning body, referred to as the rotor. Gyrostat satellite are used when the external body of 

the satellite must spin slowly to accomplish its mission while it needs the stabilization provided by faster 

rotation. This is accomplish by placing a rotor inside the satellite. The angular momentum of the rotor is 

driven by a motor attached to the satellite; no net momentum increase occurs when an adjustment in rotor 

speed is made. The examination of this device is quite straightforward if the rotor principal axes are aligned 

with the satellite principal axes, the rotor is axisymmetric, and the center of mass of the rotor is placed at 

the center of mass of the satellite. Thus the rotor is constrained to move with the rotational motion of the 

satellite and principal axes remain principal. 
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The moment of inertia of the rotor about its principal axes is ⎞⎛ 
IR 0 0xx 

[IR] = 
⎜⎜⎜⎝ 0 IR 0xx 

0 0 IR 
zz 

⎟⎟⎟⎠ (18) 

while the moment of inertia of the satellite platform is ⎞⎛ ⎜⎜⎜⎝ 

IP 
xx 0 0 

0 IP 
xx 0 

0 0 IP 
zz 

⎟⎟⎟⎠[IP ] = (19) 

Because of the geometric constraints on the system, ωx and ωy are equal for both platform and rotor while 

ωz differ for platform, ωz
P and rotor, ωz

R . Since we are in a rotating coordinate system with respect to the 

platform so the Ixx and Iyy are constant, ωz
R is the relative rotation velocity between platform and rotor. 

Therefore the total angular momentum is 

⎞⎛⎞⎛⎞⎛⎞⎛ 

[H] = 
⎜⎜⎜⎝ 

IP 
xx 0 0 

0 IP 0yy 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

ωx 

ωy 

⎟⎟⎟⎠ 
+ 

⎜⎜⎜⎝ 

IP 
xx 0 0 ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

ωx 

ωy 

⎟⎟⎟⎠ (20)0 IP 
yy 0 

0 0 IP 
zz ωP 

z 0 0 IP 
zz ωR 

z 

Because of the constraints on ω, we can write the angular momentum as ⎛ ⎞ ⎛ ⎞ 
IP + IR 
xx xx 0 0 ωP 

x 

[H] = (21)0 IP 
yy + IR 

xx 0 ωP 
y 

0 0 IP 
zz + IR 

zz ω
R 
z /ωP 

z ωP 
z 

where ω has been identified as ωP . 

⎜⎜⎜⎝ 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

⎟⎟⎟⎠

This is a remarkable result. It indicates that the effect of the rotation on the angular momentum of the 

gyrostat can be incorporated by a modification of the moment of inertia about the z axis. We will call this 

the ”effective” moment of inertia, 

= IP + IR ωR/ωP (22)Izz−eff zz zz z z 

where, ωz
R is the relative rotation velocity between platform and rotor. 

With this result, and the identification of the ”effective” moment of inertia in z, the previous analysis of the 

stability of rotation of a body with unequal moments of inertia goes through with the replacement of Izz by 

Izz−eff . 

ADDITIONAL READING 
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W.T. Thompson, Introduction to Space Dynamics, Chapter 5 

F. P. J. Rimrott, Introductory Attitude Dynamics, Chapter 11 
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