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Lecture L29 - 3D Rigid Body Dynamics 

3D Rigid Body Dynamics: Euler Angles 

The difficulty of describing the positions of the body-fixed axis of a rotating body is approached through 

the use of Euler angles: spin ψ̇, nutation θ and precession φ shown below in Figure 1. In this case we 

surmount the difficulty of keeping track of the principal axes fixed to the body by making their orientation 

the unknowns in our equations of motion; then the angular velocities and angular accelerations which 

appear in Euler’s equations are expressed in terms of these fundamental unknowns, the positions of the 

principal axes expressed as angular deviations from some initial positions. 

Euler angles are particularly useful to describe the motion of a body that rotates about a fixed point, such 

as a gyroscope or a top or a body that rotates about its center of mass, such as an aircraft or spacecraft. 

Unfortunately, there is no standard formulation nor standard notation for Euler angles. We choose to follow 

one typically used in physics textbooks. However, for aircraft and spacecraft motion a slightly different one 

is used; the primary difference is in the definition of the ”pitch” angle. For aircraft motion, we usually refer 

the motion to a horizontal rather than to a vertical axis. In a description of aircraft motion, ψ would be the 

”roll” angle; φ the ”yaw” angle; and θ the ”pitch” angle. The pitch angle θ would be measured from the 

horizontal rather than from the vertical, as is customary and useful to describe a spinning top. 
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Figure 1: Euler Angles 

In order to describe the angular orientation and angular velocity of a rotating body, we need three angles.


As shown on the figure, we need to specify the rotation of the body about its ”spin” or z body-fixed axis,


the angle ψ as shown. This axis can also ”precess” through an angle φ and ”nutate” through an angle θ.


To develop the description of this motion, we use a series of transformations of coordinates, as we did in


Lecture 3. The final result is shown below. This is the coordinate system used for the description of motion


of a general three-dimensional rigid body described in body-fixed axis.


To identify the new positions of the principal axes as a result of angular displacement through the three


Euler angles, we go through a series of coordinate rotations, as introduced in Lecture 3.
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We first rotate from an initial X,Y, Z system into an x�, y�, z� system through a rotation φ about the Z, z� 

axis. The angle φ is called the angle of precession. ⎞⎛⎞⎛⎞⎛⎞⎛ 
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The resulting x�, y� coordinates remain in the X,Y plane. Then, we rotate about the x� axis into the 

x��, y��, z�� system through an angle θ. The x�� axis remains coincident with the x� axis. The axis of rotation 

for this transformation is called the ”line of nodes”. The plane containing the x��, y�� coordinate is now tipped 

through an angle θ relative to the original X,Y plane. The angle θ is called the angle of nutation. ⎞⎛⎞⎛⎞⎛⎞⎛ ⎜⎜⎜⎝ 
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And finally, we rotate about the z��, z system through an angle ψ into the x, y, z system. The z�� axis is called 

the spin axis. It is coincident with the z axis. The angle ψ is called the spin angle; the angular velocity ψ̇

the spin velocity. ⎞⎛⎞⎛⎞⎛⎞⎛ 
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The final ”Euler” transformation is ⎞⎛⎞⎛⎞⎛⎞⎛ 
cosψsinφ + cosθcosφsinψ X cosψcosφ − cosθsinφsinψ sinθsinψ X⎜⎜⎜⎝ 

⎟⎟⎟⎠ = [T3][T2][T1] 
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This is the final x, y, z body-fixed coordinate system for the analysis, with angular velocities ωx, ωy, ωz as 

shown. The individual coordinate rotations φ̇, θ̇ and ψ̇ give us the angular velocities. However, these vectors 

do not form an orthogonal set: φ̇ is along the original Z axis; θ̇ is along the line of nodes or the x� axis; while 

ψ̇ is along the z or spin axis. 
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This is easily reorganized by taking the components of these angular velocities about the final x, y, z coor

dinate system using the Euler angles, giving 

ωx = φ̇ sin θ sin ψ + θ̇ cos ψ (1) 

ωy = φ̇ sin θ cos ψ − θ̇ sin ψ (2) 

ωz = φ̇ cos θ + ψ̇ (3) 

We could press on, developing formulae for angular momentum, and changes in angular momentum in this 

coordinate system, applying these expressions to Euler’s equations and develop the complete set of governing 

differential equations. In general, these equations are very difficult to solve. We will gain more understanding 

by selecting a few simpler problems that are characteristic of the more general motions of rotating bodies. 

3D Rigid Body Dynamics: Free Motions of a Rotating Body 

We consider a rotating body in the absence of applied/external moments. There could be an overall gravi

tational force acting through the center of mass, but that will not affect our ability to study the rotational 

motion about the center of mass independent of such a force and the resulting acceleration of the center of 

mass. (Recall that we may equate moments to the rate of change of angular momentum about the center of 

mass even if the center of mass is accelerating.) Such a body could be a satellite in rotational motion in orbit. 

The rotational motion about its center of mass as described by the Euler equations will be independent of 

its orbital motion as defined by Kepler’s laws. For this example, we consider that the body is symmetric 

such that the moments of inertia about two axis are equal, Ixx = Iyy = I0, and the moment of inertia about 

z is I. The general form of Euler’s equations for a free body (no applied moments) is 
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0 = Ixxω̇x − (Iyy − Izz )ωyωz (4) 

0 = Iyy ω̇y − (Izz − Ixx)ωzωx (5) 

0 = Izz ω̇z − (Ixx − Iyy)ωxωy (6) 

For the special case of a symmetric body for which Ixx = Iyy = I0 and Izz = I these equations become 

0 = I0ω̇x − (I0 − I)ωy ωz (7) 

0 = I0ω̇y − (I − I0)ωzωx (8)


0 = Iω̇z (9)


We conclude that for a symmetric body, ωz, the angular velocity about the spin axis, is constant. Inserting


this result into the two remaining equations gives 

I0ω̇x = ((I0 − I)ωz)ωy (10) 

I0ω̇y = −((I0 − I)ωz)ωx. (11) 

Since ωz is constant, this gives two linear equations for the unknown ωx and ωy. Assuming a solution of the 

form ωx = Axe
iΩt and ωy = Aye

iΩt, whereas before we intend to take the real part of the assumed solution, 

we obtain the following solution for ωx and ωy 

ωx = A cos Ωt (12)


ωy = A sinΩt (13)


where Ω = ωz (I − I0)/I0 and A is determined by initial conditions. Since ωz is constant, the total angular


velocity ω = ωx 
2 + ωy 

2 + ωz 
2 = A2 + ωz 

2 is constant. The example demonstrates the direct use of the Euler 

equations. Although the components of the ω vector can be found from the solution of a linear equation, 

additional work must be done to find the actual position of the body. The body motion predicted by this 

solution is sketched below. 
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The x, y, z axis are body fixed axis, rotating with the body; the solutions for ωx(t), ωy (t) and ωz give the 

components of ω following these moving axis. If angular velocity transducers were mounted on the body to 

measure the components of ω, ωx(t), ωy(t) and ωz from the solution to the Euler equations would be obtained, 

shown in the figure as functions of time. Clearly, as seen from a fixed observer this body undergoes a complex 

spinning and tumbling motion. We could work out the details of body motion as seen by a fixed observer. 

(See Marion and Thornton for details.) However, this is most easily accomplished by reformulating the 

problem expressing Euler’s equation using Euler angles. 

Description of Free Motions of a Rotating Body Using Euler Angles 

The motion of a free body, no matter how complex, proceeds with an angular momentum vector which is 

constant in direction and magnitude. For body-fixed principle axis, the angular momentum vector is given 

by HG = Ixxωx + Iyy ωy + Izz ωz . It is convenient to align the constant angular momentum vector with 

the Z axis of the Euler angle system introduced previously and express the angular momentum in the i, j, k 

system. The angular momentum in the x, y, z system, HG = {Hx,Hy,HZ } is obtained by applying the 

”Euler” transformation to the angular momentum vector expressed in the X,Y, Z system, HG = {0, 0,HG}. 
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HG = HG sin θ sin ψi + HG sin θ cos ψj + HG cos θk (14) 

Then the relationship between the angular velocity components and the Euler angles and their time derivative 

given in Eq.(1-3) is used to express the angular momentum vector in the Euler angle coordinate system. 

( ˙HG sin θ sin ψ = Ixxωx = Ixx φsinθ sin ψ + θ̇ cos ψ) (15) 

( ˙HG sin θ cos ψ = Iyyωy = Iyy φsinθ cos ψ − θ̇ sin ψ) (16) 

HG cos θ = Izzωz = Izz(φ̇ cos θ + ψ̇) (17) 

where HG is the magnitude of the HG vector. 

The first two equation can be added and subtracted to give expressions for φ̇ and θ̇. Then a final form for 

spin rate ψ̇ can be found, resulting in 

φ̇ = HG(
cos2 ψ 

+ 
sin2 ψ 

) (18)
Iyy Ixx 

1 1 
θ̇ = HG( 

Ixx 
− 
Iyy 

) sin θ sin ψ cos ψ (19) 

ψ̇ = HG( 
1 cos2 ψ sin2 ψ 

) cos θ (20)
Izz 

− 
Iyy 

− 
Ixx 

For constant HG, these equations constitute a first order set of non-linear equations for the Euler angle φ, θ 

and ψ and their time derivatives φ,˙ θ̇ and ψ̇. In the general case, these equations must be solved numerically. 

Considerable simplification and insight can be gained for axisymmetric bodies for which Ixx = Iyy = I0 and 

Izz = I. In this case, we have 
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φ̇ = HG/I0 (21) 

θ̇ = 0 (22) 

ψ̇ = HG( 
I 
1 − 

I

1 

0 
) cos θ (23) 

Thus, in this case, the nutation angle θ is constant; the spin velocity ψ̇ is constant, and the precession 

velocity φ̇ is constant. Note that if I0 is greater that I, φ̇ and ψ̇ are of the same sign; and if I0 is less than I, 

φ̇ and ψ̇ are of opposite signs; for I0 = I, the problem falls apart since we are now dealing with the inertial 

equivalent of a sphere which will not exhibit precession. 

We now examine the geometry of the solution in detail. We assume that the body has some initial angular 

momentum that could have arisen from an earlier impulsive moment applied to the body or from a set of 

initial conditions set by an earlier motion. In this case, we would know both the magnitude of the angular 

momentum HG and its angle θ from the spin axis. The geometry of the solution is shown below. We align 

the angular momentum vector with the Z axis. 

For general motion of an axisymmetric body, the angular momentum HG and the angular velocity ω vectors 

are not parallel. Using the spin axis z as a reference, the angular momentum HG makes an angle θ with the 

spin axis; the angular velocity ω makes an angle β with the spin axis. For this body, although the angular 

momentum is not aligned with the angular velocity, they must be in the x, z plane; this is a consequence 

of symmetry: that Iyy = Ixx = I0. Therefore both ωy and HGy must be zero. We examine the system in 

the plane formed by Hg and ω, as shown in the figure. The relation between the angular velocities ψ̇ and 

8 



φ̇ must be such that the vectors I0ωy j + Iωzk = HG. Since HG makes an angle θ with the z axis, and ω 

makes an angle β with the Z axis, we have 

tanθ = HGx/HGz = (I0ωx)/(Iωz ) = (I0/I)tanβ. (24) 

What we would see in this motion is a body spinning about the z axis with ψ̇ and ”precessing” about the 

Z axis with φ̇ –this is essentially a definition of precession. The ω vector, which is the instantaneous axis of 

rotation, is in the x, z plane. 

We now focus on the Z axis, and investigate the motion that can exist for a freely rotating body with the 

given parameters when it has an angular momentum in the Z direction. We see that a body rotating about 

its own axis with angular velocity ψ̇ at an angle θ from the Z axis, will also undergo a steady precession of 

φ̇ about the Z axis, keeping the angular momentum HG directed along the Z axis. The instantaneous axis 

of rotation maintains a fixed angle β from the spin axis z. The ω vector maintains a fixed angle θ − β from 

the vertical. The motion is that of the body cone rolling around the space cone. 

A variety of useful and general relations can be written between the various components of angular velocity 

ω and angular momentum H, the Euler angles φ and ψ and the angles θ and β. Using the notation HG and 
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ω for the magnitude of the HG and ω vectors, we have 

ωx = ω sin β (25) 

ωz = ω cos β (26) � � � 
HG = H2 

x + H2 
z = (ωxI0)2 + (ωzI)2 = ω I2 

0 sin
2β + I2cos2β (27) 

φ̇ = ω 
� 

(sin2β + (I/I0)2cos2β) (28) 

ψ̇ = (1 − (I/I0)) ωcosβ (29) 

(30) 

Two different solution geometries are shown: one for which I0 > I; one for which I0 < I. Consider first the 

case where I < IO. This would be true for a long thin body such as a spinning football, a reentering slender 

missile or an F-16 in roll. 

In this case, the spin ψ̇ and the precession φ̇ are of the same sign. The body precesses about the angular 

momentum vector while spinning. The vector ω is the instantaneous axis of rotation. The instantaneous 

axis of rotation is the instantaneous tangent between the body cone and the space cone. The outside of 

the body cone, shown in the figure as a cone of half-angle β aligned along the body axis, rotates about the 

outside of the space cone, shown in the figure as a cone of half-angle θ − β with its axis aligned along the 

angular momentum vector. This is called direct precession. For direct precession, β < θ. 

Now consider the case where I > I0; this would be true for a frisbee, a flat spinning satellite, or a silver 

dollar tossed into the air. 
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In this case, the spin ψ̇ and the precession φ̇ are of opposite signs. This means that the ω vector is on the 

other side of the angular momentum vector relative to the spin axis z. The body still precesses about the 

angular momentum vector while spinning. The vector ω is still the instantaneous axis of rotation. But now, 

the inside of the body cone rotates about the outside of the space cone. The angle β is greater than the 

angle θ. The body cone shown in the figure as a cone of half-angle β aligned along the body axis; the space 

cone has a half-angle β − θ and is aligned along the angular momentum vector. This is called retrograde 

procession; the rotations are in opposite directions. Depending upon body geometry, one of these solutions 

would be obtained whenever the angular momentum vector is not directed along a single principle axis. This 

would occur if an impulsive moment is applied to a body along any axis which is not a principle axis. An 

example of this is discussed below. 

Extreme Aircraft Dynamics 

The dynamics of aircraft have traditionally been dominated by aerodynamic forces. The location of the 

center of mass relative to the aerodynamic center was an important consideration as was the question of 

whether the vertical tail provided enough yaw moment to keep the vehicle flying straight. The details of the 

response of aerodynamic forces to small disturbances of the vehicle in pitch, roll and yaw, determined the 

stability of the aircraft and the frequency of the various longitudinal and lateral stability modes. 

With the introduction of high-performance fighter aircraft, whose moments of inertia about all three axes 

were comparable, which had the ability to initiate rapid rolling, and whose roll axis was not a principal axis, 

we entered into a new flight regime where, at the limit, dynamics dominated aerodynamics. 

Consider this limit, where dynamics dominates aerodynamics. We have a F-16 at high altitude where 

atmospheric density is small, and we have a test pilot giving a strong roll input about the aircraft roll axis 

which is not a principal axis. For simplicity, we take the y and z inertias to be equal and equal to I0. Low 

aspect ratio aircraft have moments of inertia in roll that are less than that in pitch or yaw so that this 

example is given by the case I0 > I and we may apply the free-body spinning solution just discussed. We 

consider that an impulsive moment/torque is applied about the roll axis and inquire what free-body motion 

this would set up. At this limit, we are neglecting aerodynamics forces. In agreement with our previous 

analysis, the moment about the x axis would produce an angular momentum about the x axis. But since 

the x axis is not a principal axis, we would initiate a coning motion as shown. 
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This could come as quite surprise to a pilot. The question of what happens next is dependent upon the 

details of the aerodynamic forces, but just to comment on the historical record: in the first days of testing 

high-performance fighter aircraft, several test pilots lost control of their aircraft, in some cases with fatal 

results. This phenomenon, called roll coupling, is now well understand and incorporated into the design and 

testing of new fighter aircraft. 
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