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Thus far, we have concentrated on the bending of shell 
beams. However, in the general case a beam is subjected to: 

• axial load, F 
• bending moments, M 
• shear forces, S 
• torque (torsional moments), T 

Figure 15.1  Examples of general aerospace shell beam structures 

Aircraft Wing 
Space Habitat Shell 

connecting nodes 
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Idealize the cross-section of the shell beam into two parts: 

•	 Parts that carry extensional stress, σxx (and thus the bending and 
axial loads) 

•	 Parts that carry shear stress σxs (and thus the shear loads and 
torques) 

Two examples again… 

• high aspect ratio wing with semi-monocoque construction 

Notes: 

•	 monocoque construction 
• –  all in one piece without internal framing 
• –  from French “coque” meaning “eggshell” 
• –  “mono” = one piece 

• semi-monocoque 
– stressed skin construction with internal framework 
– still have “eggshell” to carry shear stresses, σxs 

– internal framework to carry axial stress, σxx 
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Figure 15.2  Representation of wing semi-monocoque construction 

web + 

rib 

skin 

stiffeners flanges 
web 

flanges = spar 

Idealize this section as: 

Figure 15.3  Idealization of wing semi-monocoque construction 
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→ Skins and webs are assumed to carry only shear stress σxs 

→	 Flanges and stringers are assumed to carry only axial 
stress σxx 

• Space habitat 

Figure 15.4  Representation of space habitat semi-monocoque 
construction 

wall 

wall 
stiffeners 

spar 

flanges 

Idealize as for wing: 
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Figure 15.5  Idealization of space habitat semi-monocoque construction 

→ Outer skin and walls are assumed to carry only shear stress σxs 

→ Flanges and stiffeners are assumed to carry only axial stress σxx 

Analyze these cross-sections as a beam under combined bending, shear, 
and torsion. Utilize St. Venant assumptions: 

1.	 There are enough closely spaced rigid ribs to preserve the shape 
of the cross-section (or enough stiffness in the internal bracing to 
do such) 

2. The cross-sections are free to warp out-of-plane 

Start to develop the basic equations by looking at the most basic case: 
Paul A. Lagace © 2001 Unit 15 - 6 



MIT - 16.20 Fall, 2002 

Single Cell “Box Beam” 

Figure 15.6  Representation of geometry of single cell box beam 

modulus-weighted centroid of 
flange and stiffener area used 
as origin 

Breakdown the problem… 

(a)  Axial Bending Stresses: Each flange/stiffener has some area 
associated with it and it carries axial stress only (assume σxx is 
constant within each flange/stiffener area) 
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The axial stress is due only to bending (and axial force if that exists --
leave at zero for now) and is therefore independent of the twisting since the 
wing is free to warp (except near root -- St. Venant assumptions) 

* Find M, S, T from statics at any cross-section x of the beam 

Consider the cross-section: 

Figure 15.7  Representation of cross-section of box beam 

Area associated with 
flange/stiffener i = Ai 

Find the modulus-weighted centroid (Note: flange/stiffeners may be 
made from different materials) 
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•	 Choose some axis system y, z (convenience says one might 
use a “corner” of the beam) 

•	 Find the modulus-weighted centroid location: 
*∑ A yi
* i
y = *∑ Ai


*∑ A zi
* i
z = *∑ Ai

n


( ∑ = sum over number of flanges/stiffeners)

i =1


number = n 
(Note: If flanges/stiffeners are made of the 

same material, remove the asterisks) 

•	 Find the moments of inertia with reference to the coordinate 
system with origin at the modulus-weighted centroid 

* * *2

Iy = ∑ Ai zi 

* * *2

Iz = ∑ Ai yi 

* * * *Iyz = ∑ Ai yi zi 

Paul A. Lagace © 2001
 Unit 15 - 9 



MIT - 16.20 Fall, 2002 

•	 Find the stresses in each flange by using the equation previously 
developed: 

E  FTOT 
σ xx =  * − E f y − E f z − E1 α ∆T 1 2  1 3E1  A  

0 for no axial force 
(Will do an example of this in recitation) 

(b) Shear stresses: assume the skins and webs are thin such that the 
shear stress is constant through their thickness. 

Use the concept of “shear flow” previously developed: 
q = σ xs t [Force/length] 

shear thickness 
flow 

shear stress (called this the shear 
resultant in the case of torsion) 

Look at the example cross-section and label the “joints” and “skins” 
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Figure 15.8  Representation of joints, skins, and shear flows in 
cross-section of box beam 

Figure 15.9 

Look at the equilibrium of joint 1 

Representation of skins and stringer and associated loads 
and shear flows at joint 1 

stringer 

skin 

skin 

:
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Notes: 

• The stringer only carries axial load 
• The skin carries only shear flow 
•� The shear flow at the “end” of the skin (where it is 

“cut”) must be the same as at the edge (the 
cross-section cut). This is due to equilibrium 
(σxy = σyx) 

• Apply equilibrium: ∑ Fx = 0 

dP 
⇒	 − P + P + dx + q1 dx − q6 dx = 0 

dx 

dP 
⇒	 q1 − q6 = − 

dx 

More generally note that: 
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1.	 Angle that skin comes into joint doesn’t matter since q along 
edge is always in x-direction 

Figure 15.10  Representation of skins at joint coming in at any angle 

2. Stringer alone gives dP as its contributiondx 
Figure 15.11  Representation of stringer isolated at joint 
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3.	 If shear flows “into” joint, its contributions is in the negative x-
direction; if shear flows “out of” joint, its contribution is in the 
positive x-direction 

Figure 15.12  Representation of shear flowing (left) into and (right) out of 
joint 

Adding all this up: 

dP 
− qin + qout = 0 

dx 
dP 

⇒	 qout − qin = − 
dx 

Use this in general 
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For a more complicated joint, use superposition 

Figure 15.13  Representation of joint with multiple skins 

--> Need an expression for P -- start with: 

P = Aσ xx 

differentiating: 
dP  

A
dσ xx + σ 

d A  ⇒ = xxd x d x  d x  

= 0 since are considering stringers 
with a uniform cross-section 

Most general case: 

qout − qin = − A
dσ xx Joint Equilibrium 
d x
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Consider a simpler case: 

• Iyz = 0 (symmetric section) 

• Mz = 0 

know that: 
M zyσ xx = − 
Iy 

dP  
= A

d  M z   y⇒ 
d x  d x  

− 
Iy 

 

dP  
− 

Az  d My= 
d x  I d xy 

Recall that: 
d My = Sz (shear resultant)
d x  

Az  = Qy (moment of area about y) 

So for this case, the joint equilibrium equation becomes: 
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Q S  
qout − qin = 

y z • Symmetric section 
Iy • Mz = 0 

Now have an equation for the equilibrium of shear stresses at the joints. 
Shear stresses arise due to two reasons: 

• Shear resultant 
•	 Twisting 

In general have at any cross-section: 

It is convenient to break up the problem into two separate problems: 
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(1) “Pure Shear” (2) “Pure Twist” 

shear resultant acts 
at shear center so 
there is no twisting 

◊ --> Solve each problem separately, then add the results (use 
superposition) 

Condition: The two force systems (Sz, T  and Sz’, T’) must be 
equipollent 

Figure 15.14  Demonstration of equipollence of force systems 
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Define: d = distance from where shear resultant acts to shear center 
′ ∑ Fz = same ⇒ S = Sz z 

∑T = same ⇒ T ′ − S d = Tz 

careful: 	sign could be + or - depending upon 
direction Sz is moved! 

Figure 15.15  Representation of positive and negative contribution of Sz 
to torque 

Hint: Add up torques about line of Sz action in each case. 
They must be the same! 

(⇒  d has magnitude and sign) 
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Solution procedure 
Given: • section properties 

• loading [T(x), Sz(x)] 

Find: • shear stresses (flows) (n joints) 
• shear center 

⇒ (n + 1) variables 

1. Consider “Pure Shear” case 

a) Apply joint equilibrium equation at each joint 

Note: 	n joints will yield n-1 independent 
equations. (one is dependent since the 
section is closed) 

b) Use Torque Boundary Condition 

∑ Tinternal = Tapplied 

This is torque equivalence, not equilibrium 

Do this about the line of action of Sz 
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Then: 

Tapplied = Sz d 

∑ Tinternal = ∑ qi (moment arm)i (skin length)i 

c)	 Specified no twist (Pure Shear Case), so apply the No 
Twist Condition 

Recall from Torsion Theory: 

∫ τ ds = 2 AG 
dα 
d x  

dαHere: = 0 
d x  

and: τ =	
q 

t 

⇒	
q

∫ ds = 0 
t 
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This gives: 

a) n - 1 equations 
b)  1 equation 
c)	  1 equation 

n + 1 equations for n + 1 variables 

Solving these gives: 

• q’s due to “Pure Shear” case 

• d 

--> when complete, check via: 
∑ Internal Shear loads = Applied Shear 

(Horizontal & vertical) 

2. Consider “Pure Torsion” case 

a) 	Apply joint equilibrium equation at each joint 
Note: again, n joints give n-1 equations 

Since no shear: 
qout − qin = 0 
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b) Use Torque Boundary Condition 

∑ Tinternal = Tapplied 

Tapplied = T + or − Sz d 

found in part 1 
This gives: 

a) n - 1 equations 
b)  1 equation 

• Need: n q’s 

⇒  Solve these for q’s due to “Pure Torsion” case 

3. Sum results for “Pure Shear” and “Pure Torsion” cases 

(could use qi
s, qi

T: 	qi due to pure shear = qi
s 

qi due to pure torsion = qi
T) 
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Now have: shear flows 
(get shear stresses via: τxs = 

q
)

t 
location of shear center 

(will be important to determine deflection) 

(will go over sample problem of handout #6 in recitation) 

for: Unsymmetric Shell Beams 

• Cannot make simplifying assumptions (use equations 
coupling bending in y and z) 

• See handout #4B 

Now that the stresses (due to bending, shear and torsion) 
are determined, proceed to find the… 

Deflections of Shell Beams 

Have divided the problem and used superposition for the stresses. Again 
use the: 

St. Venant Assumption: Bending and Torsion are independent 
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Thus, can add the effects of bending, shearing, and torsion deflections to 
get the total deflections. 

General Approach: 

Figure 15.16  Representation of loading resultants and deflections for 
general cross-section 

• Place Sy and Sz at the shear center 

• T’ acts about the shear center 
• v, w = deflection of shear center 
• α = twist about shear center 
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Figure 15.17  Representation of loading and resultants in x-z plane 

•	 From the loadings py, pz obtain the resultants Sy, Sz, My, Mz, T as 
functions of x 

• Use the deflection equations previously developed: 

for bending: (subscript “B” = bending) 
2 I Myd vB = 

I Mz − yz y 

dx2 E I I ( y z  − Iy 
2 
z )( y z  − Iy 

2 
z ) E I I 

2 I Mzd wB = 
I My − yz z 

dx2 E I I ( y z  − Iy 
2 
z )( y z  − Iy 

2 
z ) E I I 
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for shearing: (subscript “s” = shearing) 

d v  S Ss z= − y − 
d x  G A G Ayy yz 

d ws = − 
Sz − 

Sy 

d x  G A G Azz yz 

for torsion/twisting 

dα T 
= 

dz GJ 

then get: 
v = vB + vs 

w = wB + ws 

α = rotation about center 

In order to do this, need to know the… 

Paul A. Lagace © 2001 Unit 15 - 27 



MIT - 16.20 Fall, 2002 

SECTION PROPERTIES 

a) 	Bending Stiffness, EI (as before) 
* 2Iz = ∑ A y

* 2Iy = ∑ A z
*Iyz = ∑ A y z 

b) Shear Stiffness, GA (have not done this before) 

Consider the deflections ∆v and ∆w for a segment ∆x with only shear 
forces Sy and Sz acting at the shear center 

Figure 15.18  Representation of shell beam segment with only shear 
forces acting at the shear center 
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Can express the shear flows in each member as contributions due to 
Sy and Sz: 

q (s) = qy (s) Sy + qz (s) Sz 

where: 

q sy ( )  = shear flow due to Sy of unit magnitude 

q sz ( )  = shear flow due to Sz of unit magnitude 

--> To determine ∆v and ∆w, it is best to use an Energy Method 

It can be shown that: 
1

A = yy 2 
qy

∫ 
( )  

ds 
t 

1
A = zz 2 

qz∫ 
( )  

ds 
t 

1
A = yz q qzy∫ ds 

t 
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c) Torsional Stiffness, GJ 

Previously saw that: 
dα 1 
d x  

= 
2 AG ∫ 

q

t 
ds (for closed section) 

Let: (as just did) 

q q  ( )  T= s 

where: 
( )  = shear flow due to T of unit magnitude 

Then, using this in the above: 

ds
d T qα 

= ∫d x  G A t2 

Recalling: 
dα T 

= 
d x  G J  2 A 

⇒ J = 
q 

ds ∫ 
(for closed section) 

t 
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--> Summarizing, to find the deflections: 

1.	 Obtain the section properties (EI, GA, GJ) and the location of 
the shear center 

2.	 Decompose load into moments, shears at shear center, and 
torque about shear center 

3.	 Find (independently) bending, shearing, and twisting deflections 
about line of shear centers (elastic axis) 

4. Sum deflections to obtain total deflection 

Figure 15.19  Representation of shell beam showing elastic axis 

Place x-axis along locus of 
shear centers --
called Elastic Axis 
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Then, vertical deflection is: 
x x xw = wB ( ) + wS ( )  − y sinα( )  

found from integrating appropriate 
differential equation 

Notes: 

• Shear center important for aeroelastic analysis 

•	 Shearing deflection (ws) appreciable for shell beams (often 
10-20% of total) 

• Generally 

– Stiff areas provide bending (EI) 
– Skin thickness provides torsion (GJ) 

Have done this analysis for closed single-cell thin-skin shell 
beams. But can also apply this for other cases (3). 

First consider… 
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Multi-Cell Shell Beams


Figure 15.20  Representation of general multi-cell shell cross-section 

(looks like single-cell beam with additional webs) 

--> Bending stresses: calculated same way as before 

--> Shear stresses: divide into two problems as before 

(1) Pure Shear and (2) Pure Twist 

Proceed as before: 

1. Consider “Pure Shear” case 
a) Apply joint equilibrium equation at each joint 
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Note: Still get (n - 1) equations but there are now (n + m -1) 
variables 

n = number of joints 
m = number of cells 

(extra q’s are in extra webs) 

b) Apply Torque Boundary Condition 

c) Apply No Twist Condition for each cell 

(Note: no twist condition applies for any closed 

loop: 
q

∫ ds = 0 )
t 

This gives: 
a) (n - 1) equations 
b) (1) equation 
c) (m) equations 
(n + m) equations 

for (n + m) variables: 
(n + m -1) q’s 

(1) d 
(n + m) variables 
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2. Consider “Pure Torsion” case 
a) Apply joint equilibrium equation at each joint 

get: (n -1) equations 

b) Apply Torque Boundary Condition 

New c) Every cell must twist the same amount: 

This is the Equal Twist Condition: 

 dα 

  = C for each cell j, this is a constant

 d x  


j 

(True since assume shape of the cross-
section is preserved) 

This gives: 
a) (n - 1) equations 
b) (1) equation 
c)	 (m - 1) equations 

(n + m - 1) equations for (n + m - 1) q’s 

3. Sum results for “Pure Shear” and “Pure Torsion” 
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Have considered closed shell beams, but could also 
have: 

Open Section Shell Beams 

Consider (for example): 

Figure 15.21  Representation of Cross-Section of Open Section Shell 
Beam 

--> Bending stresses: calculated same way as before 
--> Shear stresses: divide into two problems as before… 

(1) Pure Shear and (2) Pure Twist 
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1. Consider “Pure Shear” case 

a) Apply joint equilibrium equation at each joint 

thus only (n - 1) q’s 
Difference: Since the section is open, there are only (n - 1) skins and 

⇒  So, get (n - 1) equations in (n - 1) unknowns and the 
⇒  shear flows are now determined 

b) Apply Torque Boundary Condition 

--> This yields the location of the shear center, d 

(Note: Step (c) not necessary here) 

2. 	Consider “Pure Torsion” case 

--> Cannot use shear flow technique. Why? 

•	 in a closed (thin) section, assume the shear stress is 
constant through-the-thickness 

•	 in an open section, the shear stress is linear through-the-
thickness 
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--> Use Membrane Analogy 

2 T
τ = x 

J 

J = 
1 
∑bh3 

3 

for each skin 

Note: closed sections have greatest stiffness 

3. Sum results for “Pure Shear” and “Pure Torsion” 

Note: Shear stress is now composed of constant and linear 
variation (with respect to thickness) 

All other methods apply (deflections, etc.) 
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Analysis of Thick Skin Shells 

All that’s been done so far apply to “thin skin” shells. How does one 
handle shells with “thick skins”? 

--> Approximate as a “thin skin” shell. 

Figure 15.22  Representation of Cross-Section of Thick Skin Shell 

Thick skin section: skin 
carries normal stresses as 
well as shear stresses. 

Idealize the section by breaking up the thick skin into a finite number of 
“bending areas”: 

See Rivello, pp. 146-147

Kahn, P., “Stresses in Aircraft and Shell


Structures”, McGraw-Hill, NY, 1956
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Figure 15.23  Representation of idealization of thick skin shell into 
bending areas and skin 

Bending area 
shear stress 

Idealization Thick skin 

Skin here carries only 

Wing cross-section becomes: 

Figure 15.24  Representation of idealization of overall wing thick skin 
shell cross-section 

Now the problem reduces to previous one (stiffened shell with 
ineffective skin) 
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Question: How to idealize section? 
(different levels of approximation/complication) 

Use concept of “Effective Width” 

Figure 15.25  Generic idealization of shell with thick skin 

If skin thickness is 
large, create a 
fictitious stringer 

Lump skin area in with flange and stiffness area and analyze as stiffened 
shell with ineffective skin 

Effective area: Ae = As + bt 

width of thickness of 
skin skin 

Paul A. Lagace © 2001 Unit 15 - 41 



MIT - 16.20 Fall, 2002 

Notes: 
•	 For compressive loads, not all skin area is “effective” due 

to buckling. There is an “effective width” that resists 
buckling: 

A = As + bet 

“effective width” 
(various expressions for be -- depends 

on buckling, etc.) 

•	 For some thick sections, there are analytical expressions 
to find section properties (e.g., circular) 

•	 Skin is still “thin” in regards to shear, so that analysis (and 
the skin thickness used for it) stays the same. 

General Comments on St. Venant Assumptions

in Shell Beam Analysis


• Apply to high aspect ratio structures where 

– section retains same shape 

– sections free to warp (i.e., no axial stresses due to twisting) 
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•	 Cross-section shape is maintained by ribs, particularly where 
concentrated load is applied 

Figure 15.26  Representation of shell beam and possible rib 
configurations 

Ribs might look like 

Sheets 

w/ hole 

for a pressure vessel: 
rings 
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Ribs are acted on by local concentrated loads and reactions from skin 

Figure 15.27  Representation of load(s) acting on rib 
skin 

rib 

Rib will deform 
somewhat under loads 

• Near root (or attachment), structure is not free to warp 

Figure 15.28  Representation of shell cross-section near attachment 

Axial loads result in 
flanges due to T 
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•	 For low aspect ratio structures, root sections, sections with cutouts, etc., 
refinements must be made to St. Venant Theory of Shell Beams 

--> use energy methods, finite element 

Final Note: 

Approximate Shell Beam Analysis is important in early stages of the 
iterative process of design (“relatively” quick and easy) 
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