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Thus far we have discussed mechanical loading and the 
stresses and strains caused by that. We noted, however, that 
the environment can have an effect on the behavior of 
materials and structures. Let’s first consider: 

Temperature and Its Effects 

2 basic effects: 

• expansion / contraction 

• change of material properties 

Look, first, at the former: 

Concept of Thermal Stresses and Strains 

Materials and structures expand and contract as the temperature 
changes. Thus: 

εT  = α (∆ T) 

thermal 
temperature change 

strain coefficient of thermal expansion (C.T.E.) units: 
1 

degrees 
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If these thermal expansions / contractions are resisted by some means, 
then “thermal stresses” can arise. However, “thermal stresses” is a 
misnomer, they are really… 

“stresses due to thermal effects” -- stresses are always 
“mechanical” 

(we’ll see this via an example) 

--> Consider a 3-D generic material. 
Then we can write: 

T −εij = α ij ∆T (9 1) 

i, j = 1, 2, 3 (as before) 

αij = 2nd order tensor 

The total strain of a material is the sum of the mechanical strain and the 
thermal strain. 

mechanical 
thermal 

M T −εij = εij + εij (9 2) 

total 
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• (“actual”) total strain (εij): that which you actually measure; the 
physical deformation of the part 

T •	 thermal strain ( εij ): directly caused by temperature differences 
M 

•	 mechanical strain (εij ): that part of the strain which is directly 

related to the stress 

Relation of mechanical strain to stress is: 
Mεij = Sijkl σkl 

compliance 

Substituting this in the expression for total strain (equation 9-2) and using 
the expression for thermal strain (equation 9-1), we get: 

εij = Sijkl σkl + α ij ∆ T 

⇒ Sijkl σkl = εij − α ij ∆ T 

We can multiply both sides by the inverse of the compliance…that is 
merely the elasticities: 

−1 
S

ijkl 
= Eijkl 
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⇒ σkl = Eijkl εij − Eijkl αij ∆T 

This is the same equation as we had before except we have the 
thermal terms: 

Eijkl αij ∆ T 

--> so how does a “thermal stress” arise? 

Consider this example: 

If you have a steel bar lying on a table and heat it, it will expand. 
Since it is unconstrained it expands freely and no stresses occur. 
That is, the thermal strain is equal to the total strain. Thus, the 
mechanical strain is zero and thus the “thermal stress” is zero. 

Figure 9.1  Free thermal expansion of a steel bar 
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--> However, if the bar is constrained, say at both ends: 

Figure 9.2  Representation of constrained steel bar 

Then, as it is heated, the rod cannot lengthen. The thermal strain is 
the same as in the previous case but now the total strain is zero (i.e., 
no physical deformation). 

Starting with (in one direction): 

ε = εM + εT 

with: 
ε = 0 

Thus, the mechanical strain is the negative of the thermal strain. 
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Stresses will arise due to the mechanical strain and these are the 
so-called “thermal stresses”. 

Due to equilibrium there must be a reaction at the boundaries. 

(must always have ∫ σdA = Force for equilibrium) 

Think of this as a two-step process… 

Figure 9.3  Representation of stresses due to thermal expansion as 
two-step process 

expands due to ∆∆∆∆T, εεεεT 

Reaction 
force of boundaries related to mechanical strain, εM 

εM = -εT 

⇒ εtotal = 0 (no physical deformation) 
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Values of C.T.E.’s 

Note: αij = αji 

•	 Anisotropic Materials 

6 possibilities: α11, α22, α33, α12, α13, α23 

⇒ ∆T can cause shear strains 

not true in “engineering” materials 
•	 Orthotropic Materials 

3 possibilities: α11, α22, α33 

⇒ ∆T only causes extensional strains 

Notes: 1.	 Generally we deal with planar structures and 
are interested only in α11 and α22 

2.	 If we deal with the material in other than the 
principal material axes, we can “have” an α12 

Transformation obeys same law as strain (it’s a tensor). 
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2-D form: 

α̃ αβ = l l
βγ
ασγασ ˜˜ 

∗ ∗ α11, α22 (in - plane values) 
∗ α12 = 0 (in material axes) 

3-D form: 

αij = l l
j̃ l
αklĩ k  

So, in describing deformation in some axis system at an angle θ to 
the principal material axes….. 

Figure 9.4  Representation of 2-D axis transformation 
~ 
y2 

y1 
~θ 

y2 

θ  + CCW 

y1 
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∗ α̃ 11 = cos2 θ α11 + sin2 θ α∗ 
22 

∗ α̃ 22 = sin2θ α11 + cos2θ α∗ 
22 

∗ ∗ α̃ 12 = cos θ sinθ (α22 − α11) 
∗ ∗only exists if α11 ≠ α22 

[isotropic ⇒ no shear] 

•	 Isotropic Materials 

1 value: α is the same in all directions 

Typical Values for Materials: 

Units:	 x 10-6/°F 

µin/in/°F 

strain/°F 

⇒ µstrain/°F 

Paul A. Lagace © 2001 Unit 9 - p. 10 

Material C.T.E. 

Uni Gr/Ep (perpendicular to fibers) 

Uni Gr/Ep (along fibers) 

Titanium 

Aluminum 

Steel 

16 

-0.2 

5 

12.5 

6 
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Notes: 

•	 Graphite/epoxy has a negative C.T.E. in the fiber direction so it 
contracts when heated 

Implication: by laying up plies with various orientation can 
achieve a structure with a C.T.E. equal to zero in a 
desired direction 

•	 C.T.E. of a structure depends on C.T.E. and elastic constants of 
the parts 

E = E

E = 0 (perfectly compliant) 

1 

C.T.E. = 5 

2 examples 

1) total α of 

C.T.E. = 2 structure 
= 5 

E = E1 

C.T.E. = 5 
2) total α of 

C.T.E. = 2 structure 

E = ∞ (perfectly rigid) = 2 
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•	 α = α(T) ⇒ C.T.E. is a function of temperature (see MIL HDBK 5 
for metals). Can be large difference. 

Implication: a zero C.T.E. structure may not truly be 
attainable since it may be C.T.E. at T1 but not at T2 ! 

--> Sources of temperature differential (heating) 

•	 ambient environment (engine, polar environment, earth 
shadow, tropics, etc.) 

• aerodynamic heating 
• radiation (black-body) 

--> Constant ∆T (with respect to spatial locations) 

In many cases, we are interested in a case where ∆T (from some reference 
temperature) is constant through-the-thickness, etc. 

• thin structures 
• structures in ambient environment for long periods of time 

Relatively easy problem to solve. Use: 
• equations of elasticity 
• equilibrium 
• stress-strain 
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Example 1 - 2-material bar 

Total deformation is zero, but there will be nonzero total strain in the 
aluminum and steel 

--> stress is constant throughout 

--> match deformations 

Example 2 - Truss 

--> use equilibrium for forces in each member 

--> match displacements at each node 
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Example 3 - bimetallic strip 

Each metal has different α’s. 
What will happen? 

Bending! 

--> Concept of self-equilibrating stresses 

Must always be in equilibrium. General equation is: 

∫ σdA = F 
where: F = externally applied force 

If F = 0, can we still have stresses? 

Yes, but they must be “self-equilibrating” (satisfy equilibrium in and 
of themselves): 

∫ σdA = 0 
This is the case of free expansion (thermal) 
of structures with varying properties or 
spatially-varying ∆T (we’ll address this in a bit) 
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If α1 > α2 and ∆T > 0 

T Tεij > εij
1 2 

(we’ll see more about this bending later) 

Bimetallic strip used as temperature sensors! 

--> ∆T varies spatially (and possibly with time as well, we analyze at 
any constant in time) 

Must determine ∆T by looking at heat flux into structure. Three basic 
methods: 

• induction 

• convection 

• radiation 
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Convection most important in aircraft: 

Aerodynamic Heating 

look at adiabatic wall temperature 

2 TAW = 1 + 
γ − 1

r M∞ T∞2 
where: 

γ = specific heat ratio (1.4 for air) 
r = "recovery factor"  (0.8 - 0.9) 
M∞ = Mach number 
T∞ = ambient temperature (°K) 

TAW is maximum temperature obtained on surface (for zero heat flux) 

Note: @40,000 ft.	 M = 2 ⇒  TAW = 230°F 

M = 3 ⇒  TAW = 600°F 

⇒ (much above M = 2, cannot use aluminum 
since properties are too degraded) 

worse in reentry 
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Source of heat here is from air boundary layer: 
q = h (TAW - Ts) 

surface temperature of body
heat flux 

heat transfer 
[watts/M2] coefficient 

(convective constant) 

(h is determined from boundary layer theory) 

Radiation 

Always important but especially in space (or at high temperature in 
atmosphere). 

--> 2 considerations 

1. 	Emissivity 

--> surface emits heat 

Paul A. Lagace © 2001 Unit 9 - p. 17 



MIT - 16.20 Fall, 2002 

q = - ε σ Ts
4 

surface temperature 
heat 
flux Stefan-Boltzmann constant 

emissivity 
(a material property) 

2. Absorptivity 

heat 
q = α Is λ 

angle factor 

flux intensity of source 
absorptivity 
(a material property) 

Figure 9.5  Representation of heat flux impinging on structure 

angle of 
structure 

like the sun 

Is (intensity of source) 
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Heat conduction 

The general equation for heat conduction is: 

∂T 
qi

T = − kij
T 

∂xj 

where: 

T = temperature [°K] 
T wattsqi = heat flux per unit area in i direction  m2  

T wattskij = thermal conductivity  m K  ° 

(material properties) 
TThe kij are second order tensors

Paul A. Lagace © 2001 Unit 9 - p. 19 



MIT - 16.20 Fall, 2002 

consider:

Figure 9.6 Representation of structure exposed to two environments


Environment 1 Environment 2 

look at a strip of width dz: 

Figure 9.7  Representation of heat flow through infinitesimal strip of 
material 

T qz 

T 
T qz + 

∂qz dz 
∂z 
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Do a balance of energy: 
T 

qz
T − 

 
qz

T + 
∂qz 


 

dz = ρC 
∂T dz 

 ∂z  ∂t 

heat flux heat flux change in stored- = on side 1 on side 2 heat in strip 

where: 
ρ = density 
C = specific heat capacity 
t = time 

this becomes: 
T 

−
∂qz = ρC 

∂T 
∂z ∂t 

Recalling that: 

Tqz = − kT ∂T 
z ∂z 
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we have: 

∂ 

kz

T ∂T 

 = ρC 

∂T 
∂z  ∂z  ∂t 

If kz
T and ρc are constant with respect to z (for one material they are), 

then we get: 

kT ∂2T ∂Tz = 
ρC ∂z2 ∂t 

Fourier’s equation 
We call: 

kT 
z = thermal diffusivity

ρC 

More generally, for 3-D variation: 
∂ 


kT ∂T

 + 
∂  T ∂T ∂  T ∂T 


 = Cρ

∂T 
∂x  x ∂x  ∂y  

ky ∂y  
+ 

∂z 
kz ∂z  ∂t 

thermal conductivities in x, y, and z directions 
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Bottom line: use these equations to solve for temperature distribution in 
structure subject to B.C.’s 

T (x, y, z) gives ∆T (x, y, z) 

Note: These variations can be significant 

Example: 

Figure 9.8  Representation of plate in space 

4 
qin 

sun side black space side 

q in 

= αIs - εσTs 
4 qout = εσTs 
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could get other cases where T peaks in the center, etc. 

Result: 

⇒ Internal stresses (generally) arise if T varies spatially. (unless it is 
a linear variation which is unlikely given the governing equations). 

Why? 

consider an isotropic plate with ∆T varying only in the y-direction 
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Figure 9.9  Representation of isotropic plate with symmetric y-variation 
of ∆T about x-axis 

(for the time being, limit ∆T to be symmetric with 
respect to any of the axes) 
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At first it would seem we get a deformation of a typical cross-section 
A-B as: 

x 

y 

This basic shape would not vary in x. 
Note, however, that this deformation in the x-direction (u) varies in y. 

∂u 
⇒	 ≠ 0 

∂y 

⇒  shear strain exists! 

But, ∆T only causes extensional strains. Thus, this deformation 
cannot occur. 

(in some sense, we have “plane 
sections must remain plane”) 

Thus, the deformation must be: 
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locally 

In order to attain this deformation, stresses must arise. Consider 
two elements side by side 

Undeformed Deformed 

∆∆∆∆T ↑↑↑↑ 
greater 

These two must deform the same longitudinally, so there must be 
stresses present to compress the top piece and elongate the bottom 
piece 
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Thus: 

εx = εx (x) 
εy = εy (y) 

This physical argument shows we have thermal strains, mechanical 
strains and stresses. 

self-equilibrating 

a 
∫−a 

σydx = 0 

b 
∫−b 

σxdy = 0 

Causes 
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Solution Technique 

No different than any other elasticity problem. Use equations of elasticity 
subject to B. C.’s. 

• exact solutions 
• stress functions 

recall: 

∇4φ = − Eα∇2 (∆T) − (1 − ν)∇2 V 

• etc. 
(see Timoshenko) 

--> Does this change for orthotropic materials? 

NO  (stress-strain equations change) 

We’ve considered Thermal Strains and Stresses, now let’s 
look at the other effect: 
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Degradation of Material Properties (due to 
thermal effects) 

Here there are two major categories 

1. “Static” Properties 

•	 Modulus, yield stress, ultimate stress, etc. change with 
temperature (generally, T↑ ⇒ property ↓) 

• Fracture behavior (fracture toughness) goes through a 
transition at “glass transition temperature” 

ductile → brittle 
Tg 

(see Rivello)
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Figure 9.10  Representation of variation of ultimate stress with 
temperature 

Figure 9.11  Representation of change in stress-strain behavior with 
temperature 

ductile as T increases) 
(generally, behavior is more 

--> Thus, must use properties at appropriate temperature in analysis 

MIL-HDBK-5 has much data 
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2. “Time-Dependent” Properties 

There is a phenomenon (time-dependent) in materials known as creep. 
This becomes especially important at elevated temperature. 

Figure 9.12  Representation of creep behavior 

Hang a load P and 
monitor strain with time 

resulting strain-time 
behavior 

This keeps aluminum from being used in supersonic aircraft in critical 
areas for aerodynamic heating. 
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“Other” Environmental Effects 

•	 Temperature tends to be the dominating concern, but others 
may be important in both areas 
– atomic oxygen degrades properties 
– UV degrades properties 
– etc. 

•	 Same effects may cause environmental strains like thermal 
strains: 

Example - moisture 
Materials can absorb moisture. Characterized by a 
“swelling coefficient” = βij 

Same “operator” as αij (C. T. E.) except it operates on moisture 
concentration, c: 

sεij = βij c

“swelling” moisture concentration 

strain swelling 
coefficient 
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and then we have: 

εij = εij
M 

+ εij
T 

+ εij
S 

total 

This can be generalized such that the strain due to an environmental 
effect is: 

environmental 
strain Eεij = χij X 

environmentalenvironmental 
operator scalar 

and the total strain is the sum of the mechanical strain(s) and the 
environmental strains 

A strain of this “type” has become important in recent work. 
This deals with the field of 
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Piezoelectricity 

A certain class of materials, known as piezoelectronics, have a coupling 
between electric field and strain such that: 

electric field causes deformation/strain 
strain results in electric field 

This can be looked at conceptually the same way as environmental 
strains except electric field is a vector (not a scalar). Thus, the basic 
relationship is: 

piezoelectric 

εij
p 

= d Ekijk 

where: 
Ek = electric field 
dijk = piezoelectric constant 

units = [strain/field] 

a key difference here is that the “operator” (dijk) is a third-order tensor 
(how transform? 3 direction cosines) 
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And we add this strain to the others to get the total strain 

(consider the case with only mechanical and piezoelectric strain) 

εij = εij
M 

+ εij
p 

Again, only the mechanical strain is related directly to the stress: 
εij = Sijmn σmn + dijk Ek 

inverting gives: 

σij = Eijmn εmn − Eijmn dmnk Ek 

(watch the switching of indices!) 
thus we have “piezoelectric-induced” stresses of: 

Eijmn dmnk Ek 

if the piezoelectric expansion is physically resisted. 
Again, equilibrium (∫ σ = F) must be satisfied. 

But, unlike environmental cases, the electric field is not just an external 
parameter from some uncoupled equation of state but there is a coupled 
equation: 
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Di = eik Ek + dinm σmn 
note switch in indices since this is transpose of 
dielectric constant from previous equation 

where: 

eik = dielectric constant 
Di = electrical charge 

--> “Normally”, when piezoelectric materials are utilized, “E-field control” 
is assumed. That is, E k is the independent variable and the electrical 
charge is allowed to “float” and take on whatever value results. But, 
when charge constraints are imposed the simultaneous set of equations: 

σmn = Emnij εij − Emnij dijk Ek 

Di = eik Ek + dinm σmn 

must be solved. This is coupled with any other sources of strain 
(mechanical, etc.) 
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Piezoelectrics useful for 

• sensors 
• control of structures (particularly dynamic effects) 

Note: electrical folk use a very different 
notation (e.g., S = strain) 

Now that we’ve looked at the general “causes” of stress and 
strain and how to manipulate, etc., consider general 
structures and stress and strain in that context. 
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