Chapter 2

Numerical Aspects

Nonlinear systems can exhibit a very large number of various phenom-
ena, unlike linear systems. In many cases, these behaviors may be
sorted out by looking into the physics of the problem, as we have seen
in the introduction. However, in many other cases, physical insight
does not suffice; the goal of this course is to give you tools to investi-
gate the behavior of nonlinear systems. The first of these tools (and also
the most obvious one) is to rely on simulation. While there are many
strong reasons mot to believe what simulation tells you, it remain the
primary tool used by Aerospace Engineers for testing dynamic systems
(satellite, plane) before actually flying.

A full course on numerical integration of differential equations would
actually take one full semester. So consider this chapter as a (valuable)
introduction to the topic.

2.1 Forward Euler .method

Differential equations are encountered not only in the simple context of
control, but also in virtually all branches of Mechanics, Physics, Chem-
istry and other disciplines. The few instances when one encounters
“analytical”, “closed-form” solutions to a given differential equation
should not let one be fooled about the generality of such forms: most
nonlinear differential systems just do not have a “nice” closed-form so-
lution, and one needs to rely on simulation in order to find a solution

13

14 CHAPTER 2. NUMERICAL ASPECTS

to the set of differential equations. In fact, one may even be fooled by
the idea that a “closed-form” solution to a differential equation is of
any help. Take for example the system

—z = —z, z(0)=1. (2.1)
Everyone knows the solution to this ODE is
z(t) = e7F, (2.2)

an “analytical” solution. However, you should note that this “closed-
form” solution does not give you a clue about how it is to be computed,
either by hand or through a computer. On the contrary, the differen-
tial equation (2.1) gives you quite a bit of information about how to
compute e *: indeed, dz/dt may be approximated by Az/At, where
Az is the increment of £ during the amount of time At. Calling zq, z,,

.., Zx the successive values of z at instants 0, At, 2A¢ and so on, the

differential equation (2.1) may be approximated by

Tet+1 — Tk

At = =&, To = 1. (23)

This suggests the recursive solution scheme
Th4+1 = T — :Z:kAt (24)

to obtain a numerical value for e*. This scheme is now simple enough
to implement on a computer, thus showing the superiority of the dif-
ferential form (2.1) over the “analytical” solution (2.2). The numerical
scheme (2.4) is named forward Euler method. It is the simplest numer-
ical solution scheme you may imagine and generalizes to **any** set of
first-order differential equations

%m = F(z), z(0)=zo
to take the form

Th+1 = Tk + F(mk)At

2.1. FORWARD EULER METHOD 15

1.5 T T T Y T

0.5

_1 .5 1 i 1 L L). -l i 1
0 1 2 3 4 5] 7 8 9 10

Figure 2.1: Time histories for computing e™* via numerical inte-
gration. Plain is MATLAB e *. Dashed is numerical for At =
0.01,0.1,0.5,1.1,2.1.

-t

Its great advantage is that you can code it with Matlab in two lines,
even for very sophisticated systems. From now on, you have no excuse
for not being able to simulate a (linear, nonlinear) system.

Let us see what the forward Euler method does to the system (2.1);
we easily see that as Af get larger and larger, the accuracy of the
numerical solution degrades (it can be shown that this degradation is
a quadratic function of At, and thus this method is said to be a first-
order method). Moreover, when A gets past 2, the numerical solution
is unstable. This can be formally proved by writing the forward Euler
method as

Tky1 = (1 — At)xk,

which is a divergent geometric series when At > 2. Accuracy and sta-
bility are the main two qualities of a numerical solution method. They
must be considered separately, as we will see that accurate methods
might not be stable and stable methods need not be accurate.

Note that all simulation plots you have seen so far were obtained

16 CHAPTER 2. NUMERICAL ASPECTS

using the forward Euler method. In general, for the simple linear system

d
pri -z, A>0
1ts numerical solution will be stable if AAt < 2 and accurate if At <<

1. Thus, accuracy implies stability, but not the converse in this case.

2.2 Implicit Euler Method

In the previous section, we have sed{zhat the accuracy and stability of
the forward Euler method depend/ on how small At is chosen. The
smaller At, the better the accuracy and stability of the numerical
method. However, smaller time steps also imply longer computation
times. So a trade-off needs to be done.

There exists a very common class of dynamical systems, named stiff
systems for which this trade-off becomes very difficult. Stiff systems are
systems in which very slow and very fast modes co-exist. For example,
the transfer function

100

Ae) = e 1)(s 5 100)

(2.5)

is a very stiff system, because it has relatively small and large poles
(at -1 and -100); consider the problem of computing its step response;
the first way of doing so it to use MATLAB with the command step.
However, the main drawback associated to this procedure is that you
have used a “black-box”, that 1s, a procedure whose contents you don’t
know. As you will see later, it turns out that this porcedure is unreliable
for stiff systems! Let us now construct reliable methods to solve this
problem:

By inspection, you can say “well, the pole at -100 is so fast that
I am going to neglect it. This step response must look like the step
response of 1/(s +1)”.

Thus, any good numerical integration scheme should somehow take
this in account, by not letting the fast pole interact with the numerical
scheme. The step response of the transfer function (2.5) is obtained by

2.2. IMPLICIT EULER METHOD 17

Delta t = 0.005. Continuous: MATLAB step. Dashed: Euler

15 r
o 1r —————— —
°
2
B
E
< 0.5}
0 L 1 1 AL 1]
0 1 2 3 4 5 6
Time (secs)
Delta t = 0.0201. Continuous: MATLAB step. Dashed: Euler
15 T T T T T

L H}{W l!?»::‘%

Amplitude

Time (secs)

Figure 2.2: Step response calculation for (331)(s7100) +1)(1,+100)

simulating the system

d
Eml = —$1+l, 21(0):0
d
—z; = —100z; +1 ,z5(0)=0
dt
(1) = (e -)
S = 99 L1 oy

In view of the statements of the previous section, the forward Euler
method is not a good candidate for such a task: In order for it to work
properly (that is, be stable and accurate), we need to have 100At << 1,
and thus the fastest mode forces a very small time step. Let us see
this on Fig. 2.2. As soon as 100At > 2, the numerical simulation
becomes unstable. The fix for these problems has been found to use

a more sophisticated numerical integration scheme, named implicit
or backward Euler method. The idea is that while the forward Euler
method approximates the differential equation

d

18 CHAPTER 2. NUMERICAL ASPECTS

by

Trt1 — Tk
it S, P
At (zx),

the implicit Euler method approximates the same differential equation
by

Try1 — Tk
———— = F(zg41)- 2.6
1% = Plarn) (26)
Thus, unlike the forward Euler method, the implicit Euler method re-
quires the solution of a possibly nonlinear equation to compute zj4,
from z; (thus an “implicit” method). Let us now see the effect of this
new scheme on the stable dynamic system

d)
—z =Xz, A .
dtw z, A>0

The corresponding implicit Euler method is then
Th+1 = Tk — A$k+1At,

or
1

LT T

We now see that the resulting geometric series is always convergent.
Thus the choice of the time step does not affect the stability of the
method: However , this choice affects the accuracy of the method: the
integration error varies also quadratically with At and this is therefore
also a first-order method.

The global effect of this method is to correctly simulate the slow,
significant modes of a system while filtering out the fast ones. A correct
way to use the implicit Euler method is therefore to choose At such that
AAt >> 1 for the modes that are to be neglected, and MAAt << 1 for
the others. Let’s now use this method to compute the step response
of (2.5). As we can see on Fig. 2.3, the implicit Euler method allows to
use much larger integration steps, yet obtain a good level of accuracy.
However, if the integration step is too large, (bottom plot of Fig. 2.3)
accuracy is lost, though stability remains.

2.3. PRACTICAL RULES FOR NONLINEAR SYSTEMS 19

Delta t = 0.2. Continuous: MATLAB step. Dashed: Implicit Euler
1 T T) -

Amplitude

° o 9o
H» [>2] [o<]

T T T

I :

N :

N R

AY

\

i I 1

I
N
¥
I

0 1 I i 1 1

0 1 2 3 4 5 6
Time (secs)

Delta t = 2.1. Continuous: MATLAB step. Dashed: Implicit Euler

1 BE

Amplitude

0 1 L ' 1)
0 1 2 3 4 5 []

Time (secs)

Figure 2.3: Step response calculation for : implicit Euler

1
(s+1)(s+100)"

2.3 Practical rules for nonlinear systems

While the forward and implicit Euler schemes are valid for almost any
nonlinear system, the criteria we have derived on how to use them are
based on linear systems examples. Unlike linear systems, a nonlinear
system of the form

may see its characteristic speeds change a lot, depending on the trajec-
tory followed. Therefore, it is necessary to check at every time whether
the chosen time step is too small or too big. This is done by inspecting
the “local” dynamics of the system, that is, by computing the Jaco-
bian matrix AF and inspecting its eigenvalues (modes). This usually
leads to performant methods where the integration step varies at each
iteration. Most examples you’ll have to deal with aren’t big enough for
you to see the advantages of variable step length and you may want to
stick to a “sufficiently small” one.

20 CHAPTER 2. NUMERICAL ASPECTS

2.4 Higher-order methods

Forward and Implicit Euler methods are called first order numerical
methods, because the amount of error developed during the integra-
tion varies quadratically with the size of the integration step. We now
quickly present methods that allow to obtain higher-order errors and
improved accuracy.

2.4.1 Forward Euler method is first order

Let us first understand why forward Euler is a first-order method. The
forward Euler method for the dynamic system

z = F(z)

1s
Tp+1 = Tk + F(wkmAt (27)

Let’s compute the difference between zx,; and z(At), the solution of
= F(z), z(0) = z, - (2.8)

at time At. To do this, we first rewrite (2.8) in the integral form
2(At) — @ = / F(z(r))dr. (2.9)

A Taylor expansion of the right-hand side gives

(At)2 dF

2(At)—ax = AtF(2(0))+-—-=—(2(0))-F(a(0))+(At0(1). (2.10)

Thus, by substracting (2.7) from (2.10), we obtain

At)? dF
i —2(80) = =L (0(0)) F(a(0) - ar0(1),

that is, a second-order error in At. This is why the forward Euler
method is “first-order”.

2.4. HIGHER-ORDER METHODS 21

2.4.2 Higher-order methods

Assume now that we were to use the numerical scheme

AR dF
Thyr = @k + AtF(zx) + %E(mk).F(wk). (2.11)

Then, repeating the calculations as above would now yield a third-
order error in A. Using higher Taylor expansions of the right-hand side
of (2.9) would yield even more accurate numerical schemes (you do this
in your homework). This is the essence of the Runge-Kutta method.
the changes made for numerical implementation are the following: first,
the computation of successive derivatives for F is a tedious task, and
therefore it is replaced by approximate values obtained by computa-
tion of F only. Second, the scheme (2.11) is still a forward scheme
and bears the same drawbacks as the forward Euler method: therefore
it is usually modified to give implicit schemes similar to the implicit
Euler method. Finally, this higher-order scheme also exists for time-
dependent systems:

%m = F(z,t),
at the expense of more complicated calculations.

The figure 2.4 shows how using second order information, for exam-
ple, helps improve the accuracy of the numerical integration for a given

integration step for the system

d

5% =% z(0) = 0.

2.4.3 Computer routines

There exist MATLAB routines that implement the Runge-Kutta tech-
nique. These are named ODE23 and 0DE45, and they correspond to low
and high order Runge-Kutta solvers. Please learn them and use them!

Problems

1. State-space representation for transfer functions

22 CHAPTER 2. NUMERICAL ASPECTS

1 T T T : T T -
o9l o . e - o Co
0.8+ j .
o7k b f - _:]
osk - . ﬁ . : i NS]
oaf O\ . ‘ |]
0.2r v\ : =

o N N iy Pt NP 1 1 I
0 1 2 3 4 5 6 7 8 9 10
Time(sec)

Figure 2.4: e™*: exact (cont), 1st order (dashed), 2nd order (dot-
dashed)

Transfer functions are merely an easy format for linear ODE. The
methods proposed in this chapter require you to be able to get a
state-space representation for your transfer function. Given the
transfer function

1
h(s) = 3
find an equivalent state-space representation for it in the form
z = Az+bu
y = cz+du.

Please do the same for the transfer function

h(s) = (j—gé—li

2. Turning multiple-order order nonlinear systems into first-
order ones

Rewrite the nonlinear differential equation (1.4) in Chapter 1 as
a first-order system

z = F(z).

2.4. HIGHER-ORDER METHODS 23

3. When Matlab fails and implicit Euler works

In this problem, we are going to experimentally demonstrate that
knowing the methods is better than knowing “black box” rou-
tines. Consider the transfer function

1016
o) = I+ 109)

We wish to compute the step response for such a transfer function.

(a) First using the step command in MATLAB
(b) Second using the implicit Euler method

Plot your results and conclude.

4. Runge-Kutta method

Can you outline what the numerical integration scheme (2.11)
looks like when considering a scalar, linear system? As you try
higher and higher order schemes, can you justify why the method
is more and more exact?

(hint: The taylor expansion of e is
eM =14+ () + (M)2/2 + (At)3/3! + ... 7
5. Implementation of numerical methods on examples
Consider the nonlinear system
&+ 4z — 2.5z2 4 5z = 0,
represented in state-space as

T =
£, = —4z;— 5z, +2.522.

Simulate this system using what you learned in this chapter (but
please explain your choices), for the two initial conditions

21(0) = 1.487, z,(0) = 2.5

24

CHAPTER 2. NUMERICAL ASPECTS
and
z,(0) = 1.488, z,(0)=2.5

Is the on-line check of the validity for the numerical integration
step important? Show your plots.

. Satellite control system with on-off controls

A satellite along one of its main axis looks like

1
Y= ;2"7"')
that is, a double integrator and u is the thruster. For money
reasons, the thrust can only be switched to +1 or —1. An attitude

control system was devised for this system:

u=+1 i1fy+02y <0
u = —1 otherwise

Simulate this system over 20 seconds, starting from the initial
conditions y = 3, y = 0. What are the issues raised by this
problem beyond the contents of this chapter? How may you solve
them? Show your plots.

