Chapter 3

Phase-plane analysis:
introduction

This chapter represents the first chapter in which we will study nonlin-
ear systems characteristics in detail. The set of techniques under the
denomination “phase-plane analysis” is especially designed for systems
with two states only. This already encompasses a number of significant
situations, including the various motions for a rigid mass in one direc-
tion (such as a satellite), and many electronic systems. The basic idea
behind phase-plane analysis is that trajectories of second-order systems
may be plotted in a plane, and therefore easily visualized on a sheet or
a computer screen. In this chapter, we develop the basic techniques of
phase-plane analysis, that we will later use on specific examples.

3.1 Introduction

3.1.1 State-space equations

In this chapter, we will mostly be concerned with second-order systems
defined by the differential equation

j = f(y,9)- (3.1)

Usually, such equations arise from the study of Mechanical or Electrical
systems, such that the variable y is often the position of a given mass,
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or the voltage accross a capacitor, and, correspondingly,  is the speed
or the current intensity going in or out of the same capacitor.

Unless necessary, in order to convert the equation (3.1) to a set of
first-order equations, it is always advisable to choose

Ly = Y,
T = Y
as a set of state-space variables, leading to the set of first-order differ-
ential equations
L1 = T2
€3 = f(z1,22)
Of course, this is not the only available set of variables leading from (3.1)
to a set of two first-order equations. For example, defining the two in-
dependent variables

(3.2)

2y = y+y

2z = Y-y
would lead one to the set of first-order equations

nn = Y+ f(y,9) = (21 — 22)/2 + f((21 + 22)/2, (21 — 22)/2)
2z, = y— f(,9) = (21— 22)/2 — f((21 + 22)/2, (21 — 22)/2).

Apart from its obvious simplicity, we will see later on that the state-
space representation (3.2) has interesting graphical properties.

3.1.2 The phase plane

The phase plane is a plane whose horizontal coordinates represent z; in
the previous set of equations and the vertical coordinates represent z,.
It is the most convenient way to “visualize” a second-order system. For
example, Fig. 3.1 shows a number of trajectories which may be followed
by a damped mass-spring system satisfying the equation
j+04y +y =0.

The phase plane coordinates in this case are y and y, where y is the
position of the mass. The goal of this introductory chapter is to tell
you a few of the basic properties of trajectories in the phase plane
and introduce you to simple methods to draw them “on the back of

an envelope”, much in the way you have already learned how to draw
root-locuses or Nyquist plots.
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Figure 3.1: Phase-plane trajectories for a mass-spring system.

3.2 General ijroperties

3.2.1 Trajectories as functions of time

Consider the differential equation

%w = F(z,t), z(0) = zo;
The first question we ask is: does there exist a solution to this differen-
tial equation? In general, you've commonly heard about the solution to
a differential equation; however, the truth is that there may be none,
there may be many, they may span over a finite or infinite amount of
time.

For example, the scalar differential equation

d
P 2 |z|/?, z(0)=10

admits z = 0 as a solution, as well as z = t2. In fact there are many
other solutions (you find them in homework).
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You may wonder “well, this can’t be; there is an error with the
modelling”; you will see in homework that some (pathological) systems
may be modelled that way

Consider now the scalar differential equation

d
5= 2%, z(0) = 1.
It is a matter of elementary calculus to compute the unique solution to

this equation:
()=
z(t) = ——
1—t

which is defined for ¢t € [0 1) only.

In general, these differential equations represent fairly pathological
systems (in the second case, an explosion). Most physical systems are
“well-behaved”, and a large number of them may be characterized via
simple conditions: Consider the dynamic system

d

pTi F(z), (3.3)
and assume there exists a constant, positive number A such that for
any x; and z,,

| F(z2) — F(z1)| < h|lza — 24|

where ||.|| is you favourite distance function. (This property is named
Lipschitz continuity.) Then, for any initial condition z(0) = xo, there
exists one and only one solution to (3.3) going through z(0) at t = 0
and it is defined for any t € R. An interesting consequence of this is
that trajectories can never cross under these conditions.

3.3 Trajectories in the phase plane

Now, let us see what happens if (3.3) is in fact a second-order system
and we decide to plot its trajectories in the phase plane. The previous
result tells us that through one point there usually goes one and only
one trajectory. While trajectories may be plotted using adequate nu-
merical integration starting from a large number of initial conditions,
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we now present a set of techniques that will allow you to quickly draw
these trajectories “by hand”, and hopefully improve your insight on the -
system under study. In particular, we will present modest tools to plot
trajectories (isoclines), to time them and to locate their equilibria.

3.3.1 Isoclines
Consider the second-order system

d

—x1 = fi(z1,22),

dt (3.4)
4 _

dtmz = fz(“’l,mz)-

Then, at each point (21, z2) in the phase plane, the slope of the trajec-
tory going through the point (z,,z;) is given by

d
_ dt™? _dzm _ fa(z,30)

iz B dz, B fl(fcl,mz)’
dt™
which is well defined if fi(zq,z2) # 0.
An isocline (with slope m) is defined to be the curve satisfying the
equation

fo(z1,z2) — mfi(z1,22) = 0.

This curve represents the set of points where the slope of the trajectories
has the same value m. Unlike trajectories, isoclines are relatively easy
to plot and provide a lot of information on the set of all trajectories for
a given system.

In the case when canonical coordinates are used for the second-order .

system

¥ = f(y,9),
that is z; = y and z; = y, then the slope of the trajectory passing
through a point (zi, z;) is

f(th?)‘

T2

m =
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Figure 3.2: Set of isoclines for an undamped pendulum

In Fig. 3.2, we have plotted the isoclines corresponding to an undamped
pendulum with equation

é+sin0:0,

using canonical coordinates.

Trajectory orientation

When using canonical coordinates, it is always good to remember that
if speed is positive, then position should go up, if it is negative, position
should go down, and if it is zero, then position cannot change. Thus, for
z, positive (positive speed), the trajectories are all oriented from left
to right, for z, negative, the trajectories are all oriented from right to
left, and when z, = 0, the trajectories should be vertical, as illustrated

in Fig. 3.3 .

3.3.2 Trajectory timing

Phase plane trajectories which are plotted using isoclines do not con-
tain any time information: that is, we don’t know how much time is
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Figure 3.3: Trajectory orientation rules

actually necessary to move from one point on a given trajectory to
another on the same trajectory. We now present a few tools to help
timing trajectories, in the case of canonical coordinates, only based on
a trajectory plot on the phase-plane.

Trajectory speed

We define the trajectory speed as the speed of the state (z1,z2) along
its trajectory. You must not confuse this speed with the speed of the
physical system (i.e. z; = y). The horizontal component of the trajec-
tory speed is dz,/dt = z;. The vertical component of speed is dz,/dt =
f(z1,z2). Thus, the complete trajectory speed is \/a:f, + f(z1,z2)?. Ge-
ometrical considerations show that this speed is obtained by measuring
the distance between the two points M and N, located on the line per-
pendicular to the trajectory shown in Fig. 3.4. (Provided the axis have
the same scale, which is not automatically the case, especially with

MATLAB).
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-

Figure 3.4: Computing the trajectory speed.

Trajectory timing

Once again, using canonical coordinates, we have

d dx ¢4 dg
—$1:$2:>dt:“"‘1‘:>tAB:/ ——1-
dt T3 zig T2

In other terms, in order to compute the time to move from one point to
the other, one needs to plot the trajectory (z1,1/z;) and compute the
area between this trajectory, the horizontal axis, and the two vertical
lines passing through z,4 and z;p.

Consider the linear system with equation

y+2y+y=0
In Fig. 3.5, we have plotted a typical trajectory and its inverse.

As can be seen, the time spent far away from the horizontal axis is
considerably less than the one spent near the horizontal axis.
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Figure 3.5: A trajectory (plain) and its inverse (dashed) w.r.t. the
horizontal axis.

3.3.3 Singular points
Introduction

The determination of singular points represent an essential step in the
process of plotting the phase portrait of a nonlinear system: singular
points are the points for which the dynamical system

&t = F(z)

is at rest, that is, for which F(z) = 0. Thus they represent points of
equilibrium for the system, and they deserve special attention. In par-
ticular, it is important to determine the stability status of these points.
While in most linear systems, there is only one singular point (what
are the exceptions?), for nonlinear systems, there may be many, cor-
responding to many equilibria. An example of this fact is the stepper
motor, shown in Fig. 3.6: the rotor and stator have the same number
of armatures and magnets, respectively, and it is also the number of
possible equilibria this motor can achieve. Let § be the angular devi-
ation of the stepper motor. A valid set of equations of motion for the
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Figure 3.6: rotor and stator for a stepper motor

motor is

+0.16 +sin N§/2x = 0.

As can be seen from Fig. 3.6, there can be many equilibria for this
system.

Equilibria are very special points in the phase plane: if they are
stable, then some trajectories in the phase plane will eventually converge
towards these points. If they are unstable, trajectories will diverge
away from these points: in any case, we expect to encounter trajectory
conbcentrations around these points; for example, Fig. 3.1 shows a set
of trajectories which all seem to be converging towards the point (0, 0).

Stability of singular points

When building a phase portrait for a nonlinear system, it is in general
essential to be able to characterize the stability properties of singular
points. As we will see now, determining this stability status often goes
through the study of stability of the origin for linear systems; indeed,
the equations of motion for the nonlinear system

(%m = F(z)
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may be expanded around a singular point z, as

i1—(31: —z9) = F(zo0)+ AF(zo).(z —z0) + ||z — a:0||2 o@1)

dt
= AF(zo).(z — z0) + |l& — zo||* O(1),
where ||.|| is your favourite distance measure between z and zg. Thus,
around z = zo, the equation is “almost” like the linear system

d
Zi(m —z0) = AF(z0).(z — z0).

Thus, by studying the behavior of the linear system, one should learn
about the behavior of the nonlinear one, at least in the neighborhood
of the singular point. This has first been formalized and proved by
Lyapunov, and is named Lyapunov’s indirect method for stability: in
the case when AF(zo) is a matrix whose eigenvalues have nonzero real
part, the nature of the stability of the singular point z, for the non-
linear system is locally the same as the one of the corresponding linear
system. The case when some eigenvalues have zero real part requires
more sophisticated tools and we be dealt with later. This basic result
leads us to first study the behavior of linear systems near the origin.
Its extension to nonlinear systems will then be obvious.

Singular points for linear, second-order systems

The behavior of the second-order system

d
7= Az
with A a 2 x 2 matrix is essentially guided by the position of the two

eigenvalues of this matrix.

First case; real eigenvalues with opposite sign (saddle point):
Let A; and —); be these eigenvalues, with A;,A; > 0. Then, in an
appropriate set of coordinates (&,,%2), A may be made diagonal, and
the equations of motion now read

z1 = M
T2 = —/\2372;
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Figure 3.7: “Saddle point”. Left: principal coordinates; Right: original
coordinates
whose solutions are given by

At
Aat

1 = iloe
Ty = 5;206—

Eliminating time, we obtain the trajectory equations

A

22
Z1\ "™ A
122:5220<;:‘L> ’ :~£kW1thk:—'g>0
Z10 Ty A1

The resulting trajectories are shown in Fig. 3.7. As can be seen,
they are made up of hyperbola-like curves, along with the two axes.
One of these directions is unstable, whereas the other one is stable.
So the singular point is unstable. A physical system exhibiting such
a behavior is the inverted pendulum near its unstable equilibrium. In
the original basis, we will also find similar behaviors, except that the
main axis (the unstable and stable one) will no longer necessarily be
orthogonal (see the right picture in Fig. 3.7).

X1
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Figure 3.8: Two negative, real eigenvalues. Left: principal coordinates;
Right: original coordinates

Second case; real eigenvalues with negative sign: Using the
same notation as before, let —A; and — A, the eigenvalues of the system,
with A; > 0 and A; > 0. Then in an appropriate basis, the equations
of motion are of the form

T1 = —MZ
T2 = —A2Za,
whose solutions are given by
&1 = Zioe M
5,'2 = :izoe_Azt.

Eliminating time, we obtain the trajectory equations
A
= #a0 (ﬂ) " = K3 with k = A2 0,
Ti0 M
So trajectories in the phase plane look like “parabolas”. Assume A; >
A1. Then, the trajectories look like the ones shown in Fig. 3.8. All
trajectories are tangent to the horizontal axis, except for the one which
is the vertical axis. Such a stable equilibrium is encountered when

dealing with overdamped systems.
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Third case; real eigenvalues with positive sign: This case is ex-
actly the same as the previous one, if one decides to play the dynamics
equations “backward” rather than forward in time. Thus, the trajecto-
ries will look exactly the same, except the arrows need to be reversed:
the singular point is then unstable.

Fourth case; complex eigenvalues: In this case we know that the
eigenvalues of the system are complex, and therefore taking a diagonal
representation of the system will lead us to complex solutions, with no
obvious physical meaning. We therefore choose to stay in the most nat-
ural, canonical basis: A typical system exhibiting oscillatory behavior
is a lightly damped mass-spring system, whose equations are

§ + 26woy + wiy = 0,

with é6 < 1. Using the canonical coordinates leads us to the equivalent

system
i T _ 0 1 Ty
dt | 22 | ~ | —wd@ —26wo Ty |’

the solutions of which are of the form

;1 = Acos(wpy/1 — 82t + ¢)ebwot
T2 = —wovV1 — 62Asin(wov/1 — % + ¢)e 4“0t — fwoz;.

Let ¥ = wov/1 — 82t + ¢. Then it is possible to write

5
~ iy
z; = Bcosye vi-#
g — 6(.00.’111 g

v
————— = Bsinye vi-¢ ",
wO\/1—52

Let ; = z1 and &; = (x2 — éwoz1)/(wov'1 — 62). Then, defining r =
\/&% + &3, the pair (7, ¢) is a set of polar coordinates that can replace

(Z1,%,). From the previous results, we obtain the relation:

)

r:Ke—V1—52¢
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Thus, the corresponding trajectories are logarithmic spirals. With posi-
tive damping, these spirals converge towards the origin, which is a stable -
equilibrium. With negative damping, such spirals move away from the
origin, which is unstable. Examples of oscillatory systems with positive
damping include classical mass-spring systems. Examples of systems
with negative damping include the square section pendulum you'’ll deal
with during the lab.
One example of such logarithmic spirals is given in Fig. 3.1.

Building phase portraits of nonlinear systems (rough)

Summarizing the previous paragraphs, a systematic procedure to build
the phase portrait of a nonlinear system is as follows:

e Write the systems equations as a first-order, two degrees-of-freedom

systermn:
d
@ml = f1($1,$2)
awz = fz(wl,mz)

If possible, write this system in the canonical variables to obtain
a form like

—‘—i—:c = =z
c(ilf 1 = Iz
E-’Iiz = f($1,w2)-

e Determine the positions of the singular points, solutions to the
equations dz,/dt = 0 and dz,/dt = 0. There may be none, one,
many, or an infinity of them. When expressed in the canonical
coordinates, all singular points have to lie on the horizontal axis.
Why?

e Linearize the system around the singular points, to determine
the local stability of the corresponding equilibrium. In order to
do that, it is necessary that the linearization happens around
the singular point. In particular, compute the main directions
corresponding to these equilibria. If none of the eigenvalues has
zero real part, the local behavior of the system is the one of the
linearized system around that singular point.
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e Complete the diagram by drawing the isoclines and plot “sample”
trajectories. .

Let us now illustrate this methodology on the system described by
the equation

&+ 4z — 2.52% + 5z = 0.

e Choosing the equations of motion
Choosing as coordinates the canonical set

Ty = T
mgza':,

the corresponding first-order system is given by

i T _ )]
dt | zo |~ | =5z — 4z5 + 2.522

¢ Identify the singular points

We then compute the singular points for such a system: they are
defined by the equations: z; = 0, —5z; + 2.5z = 0, thus leading
to the two singular points (0,0) and (2,0).

e Checking stability of the singular points

The first singular point is located at the origin, and the equations
for the linearized system are obvious:

i T _ 0 1 T
dt |22 | | -5 —4 T2
The corresponding characteristic polynomial is s? +4s + 5, whose

roots are —2 £ 1. Thus, this singular point is locally stable, and
oscillatory with high level of damping.

The second singular point is at (2,0). Thus it is necessary to
linearize the system around that point; defining the translated
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coordinates £; = z, — 2 and &; = z3, we obtain the equivalent
set of equations:

%;-:cl = I3
—(-1?5’,'2 = 5531—4:1224-2552%

Linearized around (0, 0), this system becomes

)=l 43

whose characteristic polynomial is s> + 4s — 5 = (s + 5)(s —
1). Thus, this singular point corresponds to two real eigenvalues
with opposite sign, that is, a saddle point. The corresponding
eigenvectors in the state-space are easily computed to be the lines
passing through the point (2, 0) with slopes -5 and 1, respectively.

From this analysis, we are now able to predict the local behavior
of the system around these two equilibria. However, the rest of
the picture still remains unknown.

¢ Plotting the isoclines

Remember that an isocline is the curve through which all trajec-
tories go through with the same slope m. The equation for the
isocline is therefore

(bz —5:121 - 4.’32 + 2521%
m = — =
T Ta

or

2.5

m +

These are parabolas that all pass through the two singular points,

and with an extremum at ; = 1. This is illustrated in Fig. 3.9.

After plotting these trajectories, it now becomes clear which re-

gion of the plane leads towards the stable equilibrium and which
leads to instability.

z1(z1 — 2).

T =
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Figure 3.9: Complete phase-plane analysis
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Problems

1. Isoclines for linear, second-order systems

What is the shape of the isoclines for the second-order system

d azy + bz
—I —

dt 1 1 2
d

Et‘illz = ¢z + dmz

2. Singular point

Consider the equation
z—2z-1=0.

Can you tell whether this system is stable? Draw typical trajec-
tories, along with the principal directions for this system, in the
canonical basis.

3. Singular points for linear systems with pure eigenvalues

Plot the trajectories in the vicinity of the origin for the linear
system

y+y=0.
What are these trajectories?

Repeat this procedure for the system
y=0,
and
y+y =0,
and
j-3=0
Have we now covered all possible cases?
4. Stepper motor and why people like it

In this exercise, you are going to show why stepper motors are
very nice, robust devices for control purposes.
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(a) Consider the stepper motor shown in Fig. 3.6 and its free-
motion differential equation ‘

6 + A0 + sin N@/2x = 0.

Draw the phase-plane portrait for this system, for A = 0.1,0.5, 1.

(b) We now assume that a voltage may be applied accross the
rotor’s armatures, such that the differential equation for its
angular deviation becomes

6 + A6 +sin N6 /27 = u,

where u is the applied voltage. We want to control the step-
per motor from one equilibrium to the next via impulses,
that is, u = wugé(t) where 6(t) is the Dirac function. As-
sume the stepper motor is originally at rest. Give a range of
values of up such that the motor “falls” into the next equi-
librium. Do this for A = 0.1,0.5,1. Assume your voltage
source is not really reliable. What value of ug and A would
you recommend?

(c) Assume now this motor was hooked on one side to a com-
puter with a clock, on the other side to a set of demultiplying
gears leading to a large telescope for star-following purposes.
Would you trade your stepper motor for a beautiful, linearly
behaving motor that works like

g+ A0 =u?
Justify your statement.

5. A dynamical system with multiple trajectories

Assume you are walking on a rope (modelled as a straight, hor-
izontal line) for the first time. How would you best describe the
dynamics for the altitude of your body as a function of time?
(assume that once you fall off the rope, you can’t cling on it any-
more).
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6. Explosions

Draw the phase-plane portrait of the dynamical system

d 2

—z = z°.

dt
Also, time your trajectories using the techniques described in this
chapter.



