Chapter 4

Advanced phase plane
analysis

In this chapter, we build on our definition of the phase plane and the
previous results and we introduce a finer description of all the phe-
nomena that may happen for nonlinear systems. In particular, we now
introduce a finer description of phenomena that may appear in non-
linear systems, such as limit cycles and separatrices. We also provide
a more comprehensive study of equilibria, when the linearization pro-
cedure fails. Finally, we also talk about systems with discontinuous
derivatives and/or hystersis, as they are very common in aerospace
applications.

4.1 Additional behaviors

4.1.1 Limit cycles
Introduction

In the analysis of nonlinear systems, singular points are not the only
interesting points that one may want to hunt for: many nonlinear sys-
tems, although unstable, exhibit limit cycling: although trajectories
stay bounded, they experience sustained and repeated oscillations. A
classical example of a system which exhibits limit cycling is the Van der
Pol oscillator, which is an early electrical circuit obeying the dynamical
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Figure 4.1: phase-plane trajectories for Van der Pol oscillator

equation
j—el-y)y+y=0, €¢>0.

In Fig. 4.1, we have plotted (using canonical coordinates) the trajecto-
ries originating at the initial points (1,0) and (4,0), respectively, with
e = 0.1. As can be seen, after transients, both trajectories seem to
converge to a closed curve, from inside and outside respectively. Such
a closed curve is named limit cycle. Determining limit cycles is as im-
portant as finding singular points in the analysis of nonlinear systems.

Before proceeding further about performing this task, let us give (at
least) one good reason why systems exhibiting limit cycles have signif-
icant engineering importance: in Fig. 4.2, we have plotted the value of
z, as a function of time for the vanderpol oscillator; as may be seen,
eventhough it does not look ezactly like a sinusoid, it looks very much
like it. In fact, once passed through a low-pass filter, it will be a sinu-
soid. Thus, the Van der Pol oscillator may be viewed as a convenient
function generator, that may be used, say, to get the transfer function
of some linear system. This was actually used before the introduction
of digital, highly flexible electronic components. Historical irony, where
nonlinear systems contributed to make linear systems theory practical
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Figure 4.2: Output of Van der Pol oscillator

from an Engineering viewpoint! As for singular points, limit cycles may
be stable, unstable, or both. For example, the limit cycle exhibited by
the Van der Pol oscillator may easily be considered as stable, because
the “distance” from the trajectories to the limit cycle tend to 0 as time
tends to oo. This limit cycle becomes unstable if one now plays the
Van der Pol equation backwards in time. There also exist limit cycles
which are stable and unstable. This is the case, for example, of the
system given by the set of first-order differential equations

d 5 3
Eml = ‘ ml + mz - 1\ — T2

:c1+a:2

d )
E‘{.’Ez = ’ $1+(E2—1|m—

2+ 23

whose limit cycle is the unit circle and whose outside trajectories tend to
get away from this circle, whereas its inside trajectories get nearer this
circle as time increases, as seen in Fig. 4.3. Some of the simplest limit
cycles are neither stable nor unstable: trajectories of undamped mass-
spring systems in the phase plane are ellipsoids parallel to each other,
and each ellipsoid may be seen as a limit cycle (see Fig. 4.4). The limit
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Figure 4.3: Stable-unstable limit cycle
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Figure 4.4: Undamped mass-spring system trajectories



4.1. ADDITIONAL BEHAVIORS 51

cycle on which the system actually is only depends on its initial total
energy (which stays constant). Conservative systems usually exhibit
such behaviors, and they will be studied in more detail later on.

Criteria for limit cycle determination

When analyzing limit cycles, there are two tasks to consider: first, we
will discuss the question of ezistence of limit cycles in the phase plane.
Second, we will also discuss the relation of limit cycles to singular points
via Poincaré’s indez theory. We will also discuss clues that may lead
to determining limit cycles.

The second task is then to determine quantitatively what the limit
cycle looks like. The easy answer is to use computer simulation. The
harder (and more general one) will be discussed later on.

¢ Criterion for non-existence of limit cycles (Bendixson’s
first theorem)

Consider the second-order system defined by
d

@21 = f1($1, 582)
a‘z-’liz = fa(z1, $2)~
Assume that in a subdomain D of the phase plane, the quantity
. 0fi  0fs
lef - 8(131 6(112

has constant sign, then there can be no limit cycle, nor any closed
trajectory in this domain. Indeed, let I' be the boundary of D.
Then from Green’s (or Gauss’s) theorem, we have

}i(fl dry — frdzy) = //D divf dz, dz,.

Thus, if ' was a closed trajectory of the domain, then any point
(z1,z2) of T would satisfy

@—zzéorfldwz—fgdwlza

dz, f1
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Thus a contradiction. Of course, a little more care has to be
exercise during the (many) situations when f is nondifferentiable,
or even discontinuous.

Note that we have mentioned the words “limit cycle”, as well as
“closed trajectory”. This is to reflect that there exist trajectories
in the phase-plane which are closed but are not limit cycles: con- -
sider for example the inverted pendulum satisfying the equation

6 +sinf =0

Then, the two unstable equilibria (—=,0), and (7,0) are con-
nected by two trajectories, shown in Fig. 4.5. Such closed curves,
although not limit cycles, are very important in the analysis of
nonlinear systems, because they mark the boundary between two
very different, qualitative behaviors of a dynamical system (com-
plete the figure to illustrate this fact). Other names for such
curves are separatrices. When encountering several equilibria (in
particular stable and unstable ones), it is always a good idea to
look for those specific trajectories that link unstable to stable
equilibria.

Poincaré indices

Consider the system

d
Eﬂh = f1(m1,$2)
d
pric i fa(zy, z2).

Consider a closed curve I' in the phase plane and a point M
riding on I' counterclockwise. Assume this curve goes through
no singular point. Then, assuming f; and f, to be continuous,
for all positions of M, f; and f, are not simultaneously zero,
such that it is legal to talk about the vector 7, tangent to the
trajectory passing through M. As M travels on I', the vector 7
rotates an integer number of times. This number is named indez
of T' with respect to the vector field, and it is invariant under small
variations of I'. (Note the similarity between this index and what
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Figure 4.5: Closed trajectory for a pendulum

you learned regarding Nyquist stability criterion.) Depending on
the type of singularities contained in I', the value of this index is
going to vary. For example, the Poincaré index for any singular
point which is either completely attractive, repulsive or neutral
(pure imaginary eigenvalues) is equal to one, as illustrated in the
first 3 pictures in Fig. 4.6. However, the reader may realize that
the Poincaré index for a saddle point is equal to —1 (see the
last picture in 4.6). Thus, the Poincaré index is a characteristic
number of a given singular point. When I' contains many singular
points, the index of T is the algebraic sum of all indices. Poincaré
indices are very useful to get information obout singular points
and limit cycles. For example, if I turns out to be a limit cycle for
the dynamical system, then its index is equal to 1. As a result, a
limit cycle must always be around a singular point. If it contains
only one singularity, it MUST be a node, or a focus, or a center.
If it contains more than one, then the algebraic sum of indices has
to be equal to 1; thus there must be an odd number of singular
points, and if there are n saddle points, then there must be n +1
focuses and nodes.
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Figure 4.6: Poincaré indices for various singular points

Limit cycles are not necessary to determine existence of singular
points: for example, assume there exists a closed curve I' such
that all trajectories cross it inwards (resp. outwards), as shown
in Fig. 4.7. Then its index is equal to 1 and it must contain a
singular point.

Clues for existence of limit cycles (Bendixson’s 2nd the-
orem)

Consider the dynamic system

2o =F(a),

Assume it is possible to find two closed curves I'j and I'; such
that (z) Iy contains I'y, and (2) all trajectories crossing I'y cross
it inwards and all trajectories crossing I'; cross it outwards as
shown in Fig. 4.8. Then there there exists at least one closed
trajectory between I'; and I';. Of course, this theorem does not
tell us which type of closed trajectory we may actually encounter,
but it definitely hints there may be a limit cycle there, which is
likely to be stable, since all trajectories tend to enter the annulus
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Figure 4.7: All trajectories cross I' inwards

Figure 4.8: All trajectories cross I'; inwards, I'; outwards
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Figure 4.9: No limit cycle, yet a closed trajectory.

defined by I'; and I';. However, this is not the only possibility,
as shown in Fig. 4.9. We will find these concepts again later
on, when studying stability of nonlinear systems in the sense of
Lyapunov.

4.1.2 Singular points

In the previous chapter, we've seen that the study of many singular
points may reduce to the study of the linearized system around this
singular point. The limits of such an analysis are reached when one
or two of the eigenvalues for the linearized system have zero real part,
in which case many complicated behaviors may arise. The goal of this
section is not to give a general theory to treat such cases, but rather to
show you how messy things can be.

Examples

It is very easy to build a physical system that actually has a singular
point and no linearization allows to conclude stability or instability.
Consider for example the mass-spring system shown in Fig. 4.10. The
mass is free to slide horizontally. When it is at 0, the springs are not
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Figure 4.10: Nonlinear mass-spring system

extended. The mass may be subject to viscous friction, proportional to
the square of the speed. Let the length of the springs at rest be equal to
1, the mass be also equal to 1. Assume finally that the spring stiffnesses
are equal to 1/2. Then the equations of motions for this system may
be written as

3
T
=0,
(Ve +1+1)vz2 +1

where ) is the friction coefficient. The linearized system around 0 is
then

z+ Az +

4+ A& =0,

which has either one or two poles at zero. This linearized model does
not give us a single clue about the stability of the original system nor
about the shape of the trajectories around 0. We actually need to rely
on our physical knowledge of the system to tell that the system is stable.
However, it is very hard to predict a “shape” for the trajectories around
0: while as seen from far away, the trajectories are such that 0 looks
like a focus, a closer look suggests that 0 is actually a node, as seen on
Fig. 4.11. Setting the drag coefficient A to 0 also generates interesting
behaviors, as can be seen in Fig. 4.12, where large amplitude limit
cycles are almost ellipsoidal, whereas small amplitude limit cycles are
oval shaped. Consider now the dynamical system given by the equation

j+y°=0. (4.1)

The corresponding phase portrait around 0 is shown in Fig. 4.13. In
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Figure 4.11: Nonlinear mass-spring system with drag

Figure 4.12: Nonlinear mass-spring system with no drag (Nota: trajec-
tories should be closed, but aren’t due to numerical errors)
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Figure 4.13: Phase portrait for 4 + y? = 0.

particular, we see that the motion looks like a mix of a saddle point
and a center (compute the index of this singular point?). Note that the
trajectories of this system are easy to obtain (as for any conservative
system, by the way). Indeed, it is possible to integrate (4.1) to obtain
the equation

1
?]2+§y3=K~

Like saddle points, zero is simultaneously a stable and an unstable
point. However, the trajectories going through 0 are now the two func-
tions

1
y=+—y%2 y<o.

V3

Once again, it helps understanding this system when remarking that it
may represent the motion of a cart sliding on a curve shaped as shown
in Fig. 4.14.

General rules

The previous examples should convince you that there are few appli-
cable rules as far as singular points corresponding to singular values
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Figure 4.14: Cart on a slope.

with zero real part are concerned. The richness of possible behaviors is
very large, and one needs to rely on intuition, simulation and physical
insight to understand what happens.
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Figure 4.15: Left: saturation. Right: hardening gain

linear (they often are double integrators), but their actuation or sen-
sory system is only piecewise linear. The singlemost encountered such
nonlinearity is saturation, which is ubiquitous in airplanes (past 30
degrees, a control surface does not have much additional effect), and
which is the cause for many troubles (PIOs in particular). A typical
saturation characteristic is shown in the left of Fig. 4.15. In aircraft
industry, the advent of digital electronics and Fly-By Wire control logic
has contributed to the purposeful introduction of nonlinearities in the
flight control systems, especially in the pilot loop. For example, nonlin-
earities such as hardening gains (as shown in the right of Fig. 4.15) have
been under consideration for implementation in aircraft control loops.
Once we know how to plot the phase portrait for Linear systems, plot-
ting the phase portrait for piecewise linear nonlinear systems is easy;
consider for example the control of a double integrator via lead con-
trol and saturation (this is the case, say, for a satellite). The resulting
equations of motion are

 + SAT(6 +0.26) = 0.

The corresponding phase plane is divided in three regions in which the
system is fundamentally linear, and the dynamics for the system may
be summarized as

6 —1 =0 whenever § + 0.2 < —1
6 + 0.20 + 8 = 0 whenever 10 + 0.29’ <1
6 +1 = 0 whenever § + 0.26 > 1
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Figure 4.16: Phase portrait for saturating satellite control system.

Thus, the phase portrait for this system is made of a juxtaposition
of parabolas and logarithmic spirals, separated by two lines, as shown
in Fig. 4.16. Studying the stability properties of such systems is no
more complicated than previously. Only care has to be exercised with
isoclines accross different regimes.

Another type of nonlinearity comes from systems where actuation is
not symmetric: for example, some satellite systems are equipped with
only one thruster (which therefore can push only in one direction) or
two opposing thrusters with different characteristics. Using the same
lead control law as earlier, the satellite dynamics are now going to be

9 + 0.5(.0.29. +6) = 0 whenever § + 0.2 <0
0 + 0.20 + 8 = 0 whenever 8 + 0.20 > 0,

if one thruster is assumed to work nominally and the other only pro-
duces half of what it is supposed to. In this case, there appears a
piecewise linear discontinuity which stands right on top of the (pre-
sumed) equilibrium point 0, such as shown in Fig. pcwslinbis, and lin-
earization techniques fail to characterize the stability properties of this
equilibrium. We will see later on that general methods exist that prove
stability of such systems, based on Lyapunov stability theory.
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Figure 4.17: Phase portrait for asymmetric satellite control system.

4.2.2 Systems with piecewise linear, discontinu-
ous nonlinearities

On-off control systems

This type of system turns out to be extremely common in aerospace
applications, for reasons we will explain in the next chapter. In par-
ticular, the “switch” nonlinearity shown in Fig. 4.18 is a big favorite

\

Figure 4.18: Switch nonlinearity.
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Figure 4.19: Phase portrait for on-off satellite control system.

among control engineers and forms the basis for all the “on-off” control
methodologies. This is for example the case of many satellite control
systems: Modelling one satellite axis as a double integrator

6 =u,

we still combine a proportional plus derivative control logic with a
switch to obtain the control law u = —sgn(8 + 0.49). A typical trajec-
tory for this system is shown in Fig 4.19. We see that several interesting
phenomena occur: first, there actually is no equilibrium in the sense
previously defined; nowhere does the vector vector field vanish to 0.
However, trajectories seem to be converging towards 0 anyway, but in
a very curious fashion: near the switching line (defined by §+0.46 = 0),
the vector field is such that it always tends to push the state on the
other side of it, thus causing the system to “chatter” along the switching
line until reaching 0, as seen in Fig. 4.20.

Such a behavior is unlike any encountered before, and its very exis-
tence is due to the switch discontinuity: switch is discontinuous. It is
named the sliding phenomenon, and the switching line 8+ 0.46 is named
sliding surface. Depending on the application at hand, such a behavior
may or may not be desirable. In any case, we see that starting in the
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Figure 4.20: Sliding phenomenon

sliding surface, the behavior of the system is linear and first-order and
satisfies the differential equation

6+ 0.46 = 0.

Note that these dynamics are independent from the original system’s
dynamics.

Dry friction

Dry (or Coulomb) friction is extremely common in aerospace systems.
It appears wehenever two solids rub against each other, and is the cause
for major trouble, by causing undesirable vibrations or blocking critical
mechanisms, most recently in tethered satellite experiments. Consider
first the simplest case of a Mass-Spring system with dry friction, as
shown in Fig. 4.21. In the absence of friction, such a system is an
harmonic oscillator. Subject to dry friction, this system is subject to
a force which is constant in amplitude, but not in direction, as it is
constantly opposed to the direction motion takes place. Thus, when
motion takes place, dry friction amplitude is given by fosgn z, where
¢ 1s the speed of the system. Usually, fo is proportional to the weight
of the mass, according to the formula f; = umg, where m is mass
and g is gravity. When no motion occurs (z = 0), then the dry fric-
tion can assume any values between —fy and f;. In particular, if the
spring tension —kz is less than f, in amplitude, then dry friction will
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Figure 4.21: Mass-spring system subject to dry friction

exactly cancel this force such that equilibrium will happen. Otherwise,
it will assume its maximum value, opposite to spring tension force. To
summarize, dry friction is completely characterized by the system

+fo for <0,

+fo for z=0 and kz > fo
+kz for =0 and |kz|< fo
—fo for £=0 and kz<—fp
—fo for >0

Thus, dry friction is a nonlinear force whose expression depends on
speed as well as position of the mass. The equation of motion for the
oscillator may be written as

mé + kz — f =0.

When motion happen with positive speed (& > 0), then it is
mg + kz + fo = 0.

When speed is negative (¢ < 0), then the equation of motion becomes
mz + kz — fo = 0.

Thus, the phase protrait for nonzero velocities may simply be built
from the phase portraits of two harmonic oscillators, whose equilibria
are (—fo/k,0) and (fo/k,0), respectively. The trajectories for these
oscillators may be directly simulated, or obtained by rewriting the os-
cillator equations as

md’(w — fo/k)

=+ Kz = fo/k) = 0
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Figure 4.22: Phase-plane portrait for oscillator with dry friction

and dz( fo/B)
z+ fo
7T

respectively, and integrating them once to get

m <d($ —dth/k)

+ k(z + fo/k) =0

2

+k(z — fo/k)* = K,

N——”’

and

m (i(—ﬁdf—/’“)) + k(z + fo/k) = K,

which are ellipsoids centered around the two equilibria. Thus, typical
trajectories look like the ones shown in Fig. 4.22. The thickened seg-
ment in the picture represents the set of all possible equilibria. It is
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Figure 4.23: Relative effect of impulses in opposite directions

easy to see that trajectories are linearly decreasing, until they reach
one equlilibrium (in finite time). We also note that these equilibria
are naot all “equivalent”: Some of them are some what “unstable”;
indeed, assume that a “dither” is repeatedly applied to the mass, that
is, impulses of small and equal amplitudes are applied successively in
both directions, letting the system go to rest afterwards. We see from
Fig. 4.23 that one of the impulses will drive the mass away from zero,
and the other will drive it nearer zero. However, the net motion is in
favor of the motion towards zero. Thus, any equilibrium outside zero
is sensitive to process noise (and dither is indeed a good way to get rid
of dry friction).

Note that the presented dry friction model is not unique. In partic-
ular, dry friction tends to decay with speed, possibly with some discon-
tinuities at 0. This is the case for dry friction/stiction models, where
the static forces may actually be much higher than when motion occurs.
Moreover, dry friction forces may change depending on which direction
speed is going. This is the case if surfaces of contact look like the ones
shown on Fig. 4.24. A more general format for dry friction may be then
characterized by 4 elements: two stiction constants s* and s~ and two
decreasing friction functions f*(z) and f~(z) with f*(0) < s* and
f7(0) < s7, such that, when expressed for the mass-spring system, the
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Figure 4.24: Asymmetric contact between surfaces.

friction force value is given by

+f~(z) for z <0,

+s~ for z=0 and kz > s~
+kz for =0 and s > kz > —s*
—st for z=0 and kz < —st

—ft(z) for >0

4.3 Extensions

So far, we have studied systems with static nonlinearities, that is, sys-
tems where nonlinearities could be determined directly out of the state
of the system. It turns out that this is not sufficient for many aerospace
control applications. For example, satellite control strategies make
heavy use of nonlinearities coupled with desired or undesired delays and
hysteresis. Delays are systematically associated with real-life systems
and may be encountered, for example, when switching jets on and off
in satellite systems. The most common elements exhibiting hysteresis
include Schmitt triggers, whose characteristics are shown in Fig. 4.25.
It may be noted that these nonlinearities not only depend on current
state, but on past values of the state as well. As a result, phase-plane
analysis, though still very useful, is not as powerful as in the previ-
ous cases. In particular, uniqueness of trajectories passing through one
given point is not ensured anymore. For example, consider the on-off
satellite control system with a small time delay when firing thrusters,
as shown in Fig. 4.26. The corresponding equations of motion are given
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Figure 4.25: Schmitt Trigger.

1+0.7

Figure 4.26: Block diagram for on-off satellite attitude control system
with delay
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Figure 4.27: Phase portrait for on-off system and delay.

by
6(t) +sgn (6(t — A) +0.76(t — A)) = 0.

In Fig. 4.27, we have plotted the response of this system in the canonical
phase plane starting from the initial condition (0.2,0), and assuming
that earlier controls were set to 0 (in order to obtain a value for the
time delay). We see that through one point in the phase plane, there
can now pass many trajectories, which end up in a limit cycle. The
same phenomenon happens with Schmitt triggers.

Problems

1. Dry friction on a beam with rotating supports

Consider the system shown in Fig. 4.28. The beam is subject
to gravity, and it is resting on a pair of circular supports, as
shown in Fig. 4.28. Under the effect of gravity, dry friction occurs
at both points of contact, and when the beam (assumed to be
homogenous, rectangular) is perfectly centered, the dry friction
on both supports is characterized by the parameters s*, s~, f+,
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Figure 4.28: Beam on rotating supports

f~ as in the notes. When the beam is offset, you know that the
dry friction then varies linearly with the vertical load applied to
each support.

e Assume the left wheel is rotating counterclockwise, and the
right wheel is rotating clockwise. Draw the phase portrait
for this system and also draw your conclusions.

e From now on, assume the left wheel is rotating clockwise,
and the right wheel is rotating counterclockwise. Assume
that f* = f~ = st = s~. Draw the phase portrait for this
system. '

—alZ|

e Assume now f= and f~ are decresing as e Can you

describe the resulting motion as a function of a?

2. Dry friction and mass-spring systems

A mass is connected to a spring as shown in Fig. 4.29. The other
end of the spring moves at a constant speed V. The mass is
subject to dry friction.

e Describe the motion of the mass as V varies with s* = s~ =
fr=i

¢ Do the same assuming an exponentially decaying dry friction
similar to the previous problem.

Based on this analysis, can you explain how violins and squeaking
door hinges work?
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Figure 4.29: Mass-spring pulled at constant speed V'

3. Transforming dry friction into viscous friction Assume a
rotating wheel is loosely mounted on an axis such that it may
rotate and slide along that axis, with a given friction coefficient

Q.
¢ Assume the wheel cannot move along the axis. Describe its
rotational motion.

e Assume now the wheel can rotate and the axis moves rapidly
in and out of the wheel at constant relative speed V, as seen
on the picture. Describe the rotational motion of the wheel.

This method is actually used in specific instruments subject to
dry friction and is named a Brown arrangement.

2 >

4. Predicting speed of convergence to O for piecewise linear,
nonlinear system
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Consider a car with unit mass sliding on a line and powered with
two opposing proportional jets, such that when the control u is
positive, actual jet force is equal to u, and when u is negative,
actual jet force is 0.5u. Assume the control law u = —z — 0.2¢
is used. Although this system is obviously stable, it cannot be
linearized around zero. However, we can still say many things
about it.

e Assume the canonical state-space. Draw a half line originat-
ing at 0. Given an initial condition right on that line, does
the resulting trajectory cross that line again?

e How many simulations do you need to draw a general opinion
about the previous question?

e Call your initial condition on that half line z;. Then call
the next crossing point z;, etc... You have obtained a se-
quence of points. Can you draw general statements about
this sequence?

e Compute the decay rate for this system.

The sequence you have just built is named a Poincaré sequence.
It is central to the analysis of general nonlinear systems, and it
may also be used to measure speed of convergence towards a limit
cycle, for example.

5. Dry friction again!

Assume a mass, subject to dry friction, is at rest on a flat plate.

e Show that by vibrating the plate horizontally (net motion
must be zero!) the mass can climb along the slope.

e Could you have done that with viscous friction?

e What if the plate is actually not horizontal?

This phenomenon is commonly used in industry to carry around
small, identical idems, via special vibrating devices named bowlfeed-
ers.



