
ANALYTICAL JUSTIFICATION FOR 
THE FILTER HYPOTHESIS1 

Presentation of the following development is motivated primarily by two 
considerations. First, it gives a mathematical setting for thejlter hypothesis. 
This condition is arrived at directly from the system differential equation, as 
opposed to the physical or intuitive presentation in Chap. 3. Second, and 
quite importantly, this development points out that what one actually 
determines with the DF method is an approximation to the j r s t  harmonic 
of the true nonlinear oscillation, not the oscillation waveform itself. 

Consider any autonomous nonlinear system which can be reduced to 
single-loop block-diagram form, including a single nonlinearity with input 
x and output y (x , i ) ,  and a linear part L(s) ,  where 

P(s) and Q(s) are polynomials of arbitrary degree in s ,  the degree of P(s) 
being lower than the degree of Q(s).  The equation defining the modes of 
behavior of the closed-loop system is 

This derivation closely follows that of Popov and Pal'tov (Chap. 6,  Ref. 21, pp. 121-129, 
in the English translation.) 
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where s = dldt. According to the DF point of view, the limit cycle behavior 
of this system is studied in terms of the existence of the solution 

x = A sin wt ((3-3) 

to the linearized equation [cf. Eq. (2.2-30)] 

We now attempt to find the conditions which P(s)  and Q ( s )must satisfy in 
order that Eq. (G-2)will be sufficiently close to Eq. (G-4)in the presence of a 
strong nonlinearity, y(x,R), when we seek a periodic solution x( t )  close to 
sinusoidal. 

Let us therefore seek a solution to the given nonlinear differential equation 
(G-2) in the form 

x ( t )  = x,( t )  + .x,(t) ( (3 -5)  

where x,( t )  = A, sin w,t (G-6) 

is the true first harmonic of the periodic solution, x,(t) is an arbitrary bounded 
time function, and E is a small parameter, viz., 

m 

€xT(t)= E Ak sin (kw,t + 0,) (G-7) 
k=2 


Substituting for x from Eq. (G-5) into Eq. (G-2), we obtain 

Next, the nonlinearity output is expanded in the Taylor series (truncated at 
first order in E):  

This expression states, in essence, that the periodic nonlinearity output in 
response to x( t ) is very close (i.e., to an order E )to the response produced by 
the first harmonic, x,(t) ,  alone. This will be true even for the discontinuous 
nonlinearities often encountered. 

The first term in the right-hand member of Eq. (G-9) is the nonlinearity 
output when forced by a sinusoid of amplitude A, and frequency w,. In 
DF notation, we have 
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where, as k -+oo, we require Fk-+ 0. The second term in the right-hand 
member of Eq. (G-9) is represented by its Fourier series, namely, 

m 

+ ay(X1'il) i,]= 6 2 Gk sin (kwlr + 1,) (G-11)X' ai 
k=O 

Substituting the expressions of Eqs. (G-6), (G-7), and (G-9) to (G-11) into 
(G-8) gives 

Q(s)Al sin wlt + eQ(s) A, sin (kwlt + 8,) + P(s)Fo 
k=2 

I 00 

na(A1'wl) s sin wlt + ~ ( s )2 F, sin ( k q t  + ~IJ 
01 k=2 

CO
+ EP(s) I: Gp sin (kwlt + 1,) = 0 (G-12) 
k=O 

In order to satisfy equality with zero, the coefficient of each harmonic in the 
left-hand member of Eq. (G-12) must be individually set to zero. 

ZERO HARMONIC 

From Eq. (G-12) we require 

Fo+ €GOsin 1, = 0 (G- 1 3) 
or to an order E ,  

Fo= 0 (G- 14) 

Thus we have the first requirement imposed upon y(x, i ) :  the absence of a 
constant component. This is consistent with the content of Chap. 3 
(although in Chap. 6 this restriction is removed). 

FIRST HARMONIC 

From Eq. (G-12) we require, upon division by Q(s), 

+ €L(s)G, sin ( q t  + A,) = 0 (G-15) 
or to an order E ,  

A sin wt + L(s)A n,(A,w) + 2--L-(A n)s] sin wt = 0 (G-16)
w 

This may be rewritten as 
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which is the familiar DF statement defining a system limit cycle. Hence, 
to an order E ,  the DF method determines the first harmonic of the periodic 
solution of the nonlinear system [Eq. (G-2)],which is close to a sinusoidal 
solution (if this periodic solution exists). 

H I G H E R  H A R M O N I C S  

For k = 2 ,  3, . . . , it follows from Eq. (G-12) that the kth harmonic terms 
must satisfy 

EA, sin (kw,t + 8,) + L(jkwl)F,  sin (kw,t + p,) 

+ EL( jkw,)G, sin (kwlt  + A,) = 0 (G-18) 

In order to observe this equality, that is, in order that all the terms 
EA, sin (kw,t + 8,) may in reality be small, we require small order of 
magnitude of the terms I L( jkwl)l F,. Each term must be a t  least of order E ;  

that is, in comparison with A,, each term must be at least of the same order 
of magnitude as the quantity E X ,  in comparison with x,. Thus, employing 
Eq. (G-17),we establish as a requirement the inequality 

Since we are considering strong nonlinearities, it does not follow that the 
quantities F, may be considered small in comparison with ~ d n , 2+ n,2, 
particularly for lower values of k .  Therefore we must require that 

IL(jkw)l < IL(jw)l for k = 2 ,  3, . . . (G-20) 

and since the degree of Q(s)  exceeds the degree of P(s),  

Equations (G-20) and (G-21) constitute the so-called "filter hypothesis." 




