
7 SINUSOIDAL-INPUT 
DESCRIBING FUNCTION (DF) 

2.0 INTRODUCTION 

Of the various describing functions discussed throughout this text, the 
sinusoidal-input describing function is by far the most widely known and used. 
In the following discussion the abbreviation DF is reserved for reference to  
this describing function. 

As the name implies, the DF is a linearization of a nonlinear element 
subjected to  a sinusoidal input. In the next two chapters we see that different 
interpretations regarding the origin of this sinusoidal input allow the study 
of totally unrelated modes of behavior occurring in nonlinear systems. 
However, in each such study the representation for the nonlinearity is 
its DF. 

According to the theory of optimum quasi-linearization developed in the 
preceding chapter, the describing function for a nonlinearity driven by 
an input consisting of just a single sinusoidal component is given by a 
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specialization of Eqs. (1.5-36). These expressions are repeated here for 
convenient reference. 

NA = n, +jn, (2.0-la) 

2 
n, = -y(0) sin 8 

A 

The nonlinearity input is in this case 

x ( t )  = A sin (wt + 8) 

where the amplitude and frequency, A and w,  are deterministic quantities, 
and 8 is the random phase angle which is uniformly distributed over 2~ 
radians. 

y(0) in Eqs. (2.0-1) is the output of the nonlinearity at an arbitrary time 
called zero. The output of a nonlinearity is a function of its input, and in 
some instances the relation is quite complex. To emphasize the fact that 
y ( t )  depends on x ( t )  in some way, we shall indicate in the notation a depend- 
ence on the current value of x ( t )  and its first derivative. 

This is not a restriction on the form of the nonlinearity, however. Any 
functional relation is acceptable. It is required only that the steady-state 
output history corresponding to a sinusoidal input be defined. In view of 
Eqs. (2.0-2) and (2.0-3), 

y(0) =y ( A  sin 8, Aw cos 8) (2.0 4 )  

In general, the expectations indicated in Eqs. (2.0-1) are over all random 
parameters required to define y(0). For the single-sinusoidal-input case, 
the only random parameter in the problem is the phase angle 8. The 
expectation is then a single integral over the range of 8,  which can be taken 
as 0 ,  27~. The probability density function for this uniformly distributed 
variable is 11257 in that interval. Equations (2.0-1) are thus specialized in 
this case to 

1 2n 
n = - y ( A  sin 8,  A o  cos 8) sin 8 dB (2.0-5a)" TrA o 

y ( A  sin 8,  Aw cos 8)  cos 8 dB (2.0-5b) 

Historically, the basis for the DF was established by Krylov's and 
Bogoliubov's continuation in the field of nonlinear mechanics of an earlier 
work by Van der Pol. We shall briefly develop and study this basis to see 
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how it relates to the D F  of current usage, derived from a quite different 
point of view. Once having established the significant relationships involved, 
the remainder of this chapter is then devoted to D F  calculations for a variety 
of nonlinear elements. Static and dynamic, memoryless and with memory, 
implicit and explicit nonlinearities are treated. A compilation of the DFs 
for all the nonlinearities treated, as well as many others, is presented in 
Appendix B. 

2.1 ASYMPTOTIC METHODS FOR THE STUDY OF 
NONLINEAR OSCILLATIONS 

Starting with the well-known and extensively developed theory of linear 
systems, particularly of linear oscillators, a first step in the exploration of 
nonlinear oscillatory behavior is to study periodic regimes of the system 
characterized by 

.it + oo2x+ pf ( x , i )  = 0 (2.1-1) 

where p is a small parameter. In the limit as p +0 this system reduces to 
the classical linear oscillator. 

By asymptotic methods we shall mean approximating schemes for the 
solution of Eq. (2.1-l), which also result in the exact solution in the limit as 
p+ 0. A great variety of such methods have been developed. Our 
ultimate objective is to develop methods which are also valid in the limit of 
large p, as in the case of discontinuous nonlinearities. Nevertheless, the 
most intuitive point of view is born in the study of only slightly nonlinear 
systems. 

Since the intent of this section is primarily to place in perspective the DF 
approach to be thoroughly studied in this and the following two chapters, 
we discuss only two different asymptotic methods. The two approaches are 
conventionally called the perturbation method and the method of slowly 
varying amplitude and phase. 

PERTURBATION M E T H O D  

Another name by which the general technique is known is the method of 
small parameters. This method was formulated by Poisson (ca. 1830) and 
studied throughout the nineteenth century by a number of astronomers, 
including Gylden and Lindstedt, culminating finally in the extensive work 
of Poincart. Although the discussion following is without proof of conver- 
gence of the solution, a rigorous mathematical justification due to PoincarC 
(Ref. 42) is available in Stoker (Ref. 49). 
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For the system of Eq. (2.1-1) assume a solution of the form 

where p is the small parameter to which the nonlinear term is proportional. 
Substituting x(t) from Eq. (2.1-2) into (2.1-1) gives 

Consider the right-hand member of Eq. (2.1-3) as expanded in a Taylor 
series about x(t) = xo(t). This, of course, requires that f(x,i) be an 
analytic function. We now argue that, for p -+0, the leading term x,(t) in 
Eq. (2.1-2) must approach the corresponding exact solution x(t) and that 
the terms involving xi(t) for i 2 1 must be of increasingly smaller importance. 
Thus the initial conditions are distributed according to 

and xi(O)=O i i (0 )=O f o r i 2 1  (2.1 -4b) 

and Eq. (2.1-3) is solved recursively, starting with low-ordered p. Collating 
terms of like coefficient, pi, gives 

In this manner the postulated series expansion of x(t) is determined. 
A difficulty arises in the solution of this set of equations which, in one form 

or another, baffled the earlier nineteenth-century astronomers. This is due 
to the appearance in the solutions they obtained of apparently unbounded 
functions, called secular terms. It is easy to appreciate this difficulty by 
noting that the first few terms in the series expansion of a perfectly well- 
behaved bounded function can convey the picture of unboundedness. For 
example, 

sin (w, + p)t = sin oa t  + pt cos w,t - p2-
t 2 

sin w,t + - . (2.1-6)
2 

Many attempts to remove secular terms were made. One simple approach 
was to assume a dependence of solution frequency upon solution amplitude, 
should the physical picture support this observation, by taking 
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where w is the actual fundamental frequency of the oscillation, and so 
choosing Yl(A), Y2(A), . . . as to remove the secular terms as they arise 
(Ref. 6). Inserting both the expression for wo2 from Eq. (2.1-7) and the 
series for x(t) from Eq. (2.1-2) into Eq. (2.1-1) and once again collating 
terms of like coefficient pi  give the recursive set of equations 

One advantage of the perturbation method is that successive approxi- 
mations of higher order can be formed in a systematic manner. It  is quite 
useful for the study of both nonoscillatory and oscillatory systems. For 
the first type, though, a disadvantage is the requirement of an analytic 
functional description of the nonlinearity; and for the latter type an additional 
disadvantage is that a special mode of solution is required to eliminate 
occurrence of the secular terms. In what follows we present another 
procedure designed rather specifically for nonlinear oscillatory systems, 
which does not entail either of these disadvantages. 

METHOD OF SLOWLY VARYING AMPLITUDE A N D  PHASE 

For small p, it is argued, the solution of Eq. (2.1-1) is fundamentally 
oscillatory in nature. Recognizing this behavior, Van der Pol (1924) 
proposed a solution of the form 

x(t) = a(t) sin mot + b(t) cos w,t (2.1-9) 

where a(t) and b(t) are to be determined by the method of variation of 
parameters. The principal feature in this solution is use of the method of 
averaging to reduce the resulting variational equations to autonomous form. 
Krylov and Bogoliubov (1937) and Bogoliubov and Mitropolsky (1958) 
follow the same original argument, but use a solution of the form 

x(t) = A(t) sin [mot + 6(t)] (2.1-10) 

As this formulation is fully equivalent, albeit more convenient to work with, 
than Van der Pol's, we develop the method of slowly varying amplitude and 
phase after Krylov and Bogoliubov (Ref. 29). 

Let us assume the functional time dependence of A and 6 without explicitly 
indicating it by an appended argument in t, and for convenience introduce 
the parameter y ,  defined by 

y = wot + 6 (2.1-1 1) 
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We seek a solution of the form 

x = A sin y 

i = Aw, cos y 

which requires the constraint 

A sin y + ~8 cos y = 0 

determined by differentiation of Eq. (2.1-10) and comparison of the result 
with Eq. (2.1-12b). Forming the second derivative x by differentiating i 
in Eq. (2.1-12b) gives 

x = Aw, cos y - ~ w , ( w ,+ 8)  sin y (2.1-14) 

Substituting for x and x in Eq. (2.1-1) and repeating Eq. (2.1-13) gives the 
variational set 

AW, cos y - ~ w , 8sin y = - p f ( A  sin y ,  Aw, cos y )  (2.1-15a) 

A sin y + ~6 cos y = 0 (2.1-15b) 

Solving Eqs. (2.1-15) for A and 8 yields 

1 
A = --pf ( A  sin y,Aw, cos y )  cos y (2.1-16a) 

0 

. 1 
t )= - pf ( A  sin y ,  Aw, cos y )  sin y 

A wo 

At this point we are at an apparent impasse, since this nonautonomous 
set usually cannot be solved exactly. From the requirement that p be small, 
however, it may be inferred that in general A and 8 are small, and hence 
that A and 0 are slowly varying functions of time. We are thus led to 
consider approximate solutions A and 8 obtained by an averaging of A and 
8 over one complete cycle of the oscillatory solution. Equations (2.1-16) 
are thereby replaced by the averaged set rpfA=--.....- I ( A  sin y ,  Aw, cos y )  cos y d y  (2.1-17a)

2770,

rf8 % - p f ( A  sin y ,  Aw, cos y )  sin y d y  (2.1-17b)
2xw0 

In effecting each of these integrals, A is held constant. Integrating the 
right-hand member of Eq. (2.1-17a) yields a first-order differential equation 
of the separable-variables type in A and t .  Call the solution of this equation 
A ( t ) .  Then, integrating the right-hand member of Eq. (2.1-17b), in which 
A is first brought out from under the integral sign, yields another first-order 
differential equation. Replacing A by A, one solves this differential equation 
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to obtain B(t). The first-approximation solution to Eq. (2.1-1) then takes 
the form of Eq. (2.1-10); i.e., it is x(t) = _A(t) sin [wot + t ( t ) ] .  

The resulting first-order solution, so obtained by Krylov and Bogoliubov 
(op. cit.), is simpler in form than is the solution obtained by the perturbation 
method. However, higher-order approximations do not follow as simply. 
Methods of obtaining higher-order approximations are deferred to Chap. 3. 
It  is to be noted thatf(x;i) need not be analytically expressed before com- 
putation of the integrals in Eqs. (2.1-1 7) can be effected. Both discontinuous 
and continuous nonlinear functions f (x, i )  can be treated with equal ease. 

2.2 EQUIVALENT LINEARIZATION A N D  THE DF 

Having just studied the method of slowly varying amplitude and phase, we 
are in a position to interpret the solution obtained in terms of an equivalent 
linear representation for the nonlinearity ,uf(x,i). For continuity with 
what shall become the central part of this and the two following chapters, 
we rename the nonlinear element 

and proceed to the concept of harmonic linearization. 

A N  INTERPRETATION O F  PREVIOUS RESULTS 

According to Krylov and Bogoliubov, the solution to 

can be sought in the form 
x = A sin y 

where, as shown in the previous section, 

y(A sin y ,  Am, cos y) cos y dy 

(2.2-4) 

4 % - y(A sin y ,  Amo cos y) sin y dy 

Let us attempt to identify these results in terms of the solution to an 
already well-known system, the linear second-order damped oscillator. For 
this system the differential equation of motion is 
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where 5 is the damping ratio, and wn is the natural frequency. The exact 
solution of this equation can be written in the form 

x = ~ , e - ~ " n ~sin ( w n d1 - C 2  t + 8,) 

= A sin (wt  + 8,) (2.2-6) 

where A, and 8, are determined by the initial conditions. In any event, the 
solution is a sinusoid with amplitude A ,  where 

A = Ale-c"nt (2.2-7) 

from which we immediately determine the relationship 

The frequency of the exact solution, squared, is 

w2 = wn2(1- c2) (2.2-9) 

Using the interpretations for 5 0 ,  and wn2afforded by the above, we may 
rewrite (2.2-5)in the form 

Note that, as yet, there is no approximation incorporated in this equation. 
The gap in this argument can now be closed, since here we observe that, 

in accord with the results of Krylov and Bogoliubov [Eqs. (2.2-2) to (2.2-4)], 
the coefficients of Eq. (2.2-10) can be expressed in the form 

where the following definitions have been made: 

sin y ,  Aw, cos y )  sin y dy (2.2-12a) 

n,(A,wo) = - /';(A sin y ,  Aw, cos y )  cos y d y  (2.2-126)
TrA 0 

and only terms up to first order in the implicit small parameter p have been 
retained, viz., 

Comparing Eqs. (2.2-2)and (2.2-1 l ) ,  and callings = dldt, it is apparent that 
the linearized version of the original nonlinear term y ( x , l ) ,  valid to second 
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order in the implicit small parameter, is 

The above linearization is fundamental to all that follows, and was, in fact, 
the$rst derivation ofthe DF. What has, in effect, been done is the replace- 
ment of a small nonlinearity by a linear proportionalplus derivative network, 
whose coefficients are not constant, but rather are functions of the amplitude 
and frequency of the system oscillation. This procedure is called harmonic 
linearization, particularly in the Russian literature. 

It is significant to note here the suggestion by Krylov and Bogoliubov that 
this linearization (derived in terms of a second-order system) also be used 
for nonlinearities in systems of higher order than second. It  should also be 
noted that this linearization is exactly that which results from the general 
theory of Chap. 1. In particular, Eqs. (2.2-12) are identical with Eqs. 
(2.0-5). 

PHYSICALLY MOTIVATED DF DEFINITION 

During the years 1947 to 1950, in at least five different countries a new point 
of view came into being. This new point of view was essentially a physically 
motivated harmonic linearization, which, as we shall see, yields results 
equivalent to those derived by Krylov and Bogoliubov. Kochenburger 
(Ref. 27) is generally credited with its introduction in the United States, while 
Tustin (Ref. 52) of England, Oppelt (Ref. 41) of Germany, Goldfarb (Ref. 
15) of Russia, and Dutilh (Ref. 10) of France played similar roles in their 
respective countries. Since the time of appearance of the papers cited above, 
a veritable wealth of material has been published relating to the DF and 
modifications thereof. 

It  is DF philosophy simply to replace a system nonlinearity by a linear 
gain, chosen in a fashion which renders similar the responses of the non- 
linearity and its approximation, in some sense, to the same sinusoidal input. 
This is an attempt to extend the transfer function concept of linear-system 
studies to the nonlinear-system problem. In this vein we observe that, if a 
nonlinearity y(x,f) is excited by a sinusoidal input (y = ot) ,  

x = A sin y (2.2-15) 

then the output is expressible by the Fourier series expansion1 
w 

Y(A sin y ,  Aw cos y) = 2 A,(A,w) sin [nwt + p,(A,w)] (2.2-16) 
n=l 

N o  output dc term is present since in this chapter we restrict our attention to odd r m-
linearities. Other nonlinearities are treated in Chap. 6. 
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and the sinusoidal-input describing function (DF), denoted N(A,o), is by 
definition 

phasor representation of output component at frequency o 
N(A,w) = 

phasor representation of input component at frequency o 

In other words, the DF is the complex fundamental-harmonic gain of a 
nonlinearity in the presence of a driving sinusoid. 

The concepts of transfer magnitude and phase changes are embodied in 
this definition, a direct carry-over from familiar linear theory. In fact, the 
D F  for a nonlinear element is analogous to the transfer function for a linear 
element, reducing identically to this transfer function in the purely linear 
case. We must note, however, that whereas for a linear device the response 
to an infinite spectrum of sinusoids completely defines the response to any 
other form of excitation, for a nonlinear device the response to an infinite 
spectrum of sinusoids is not definitive about the response to other inputs. 
Linear superposition is not valid. Nevertheless, the D F  does lead to simple 
analysis and synthesis techniques for nonlinear systems which are reminiscent 
of the familiar frequency response methods exploited so successfully in linear- 
system analysis and synthesis. 

A pictorial view of the DF,  including all higher harmonics which are 
excluded in the D F  formulation (collectively called the residual), is shown in 
Fig. 2.2-1. 

An equation for the D F  in terms of y(x,f) is easily obtained. Multiplying 
both sides of Eq. (2.2-16) by either sin y or cos y ,  and integrating to 

Figure 2.2-1 Definition of the DF. 
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determine the first Fourier coefficients, we find the relationships 

sin y ,  Aw cos y )  sin y dy 

n S2' 
(2.2-18)  

A, sin p, = - y ( A  sin y ,  Aw cos y )  cos y dy 
0 

Now, multiplying the second of these equations by j, adding the two equa- 
tions, and dividing both sides of the resultant equation by A ,  we get 

A, , 
2' 

-owl = L1y ( A  sin y ,  Aw cor y)e-'"dy (2.2-19)
A 57'4 o 

where the relationship 

ei" = cos g, +j sin g, 

has been used. Comparing Eqs. (2.2-17) and (2.2-19), the equation for 
the D F  in terms of the system nonlinearity becomes 

sin y ,  Aw cos y)e-jw dy (2.2-20) 

Before attempting to tie in this result with the linearization of Krylov and 
Bogoliubov, we first observe the relation of this D F  to mean-squared 
approximation error. 

A PROPERTY O F  T H E  D F  

Historically, the D F  as a linearizing complex gain was defined as opposed to 
having been derived. It  was then noted that the equivalent linearization 
thus defined also minimized the mean-squared approximation error. This 
observation results from the following calculation. 

Calling the magnitude and phase shift of the linearizing complex gain p, 
and ON, respectively, we seek to minimize the following error measure: 

where 

e =Y ( . G ~- y , , , , , x (A?~)  

= y ( A  sin y ,  A a  cos y )  - A p ,  sin (wt + O:v) (2.2-22) 
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A stationary point of Eq. (2.2-21) exists when, simultaneously, 
-

ae2-
aPN 

Differentiation with respect to p, yields, after simplification, 

2 a I o  

, -- [ y ( A  sin y ,  A o  cos y )  sin (of+ 8,) dt (2.2-24) 
- T A  , o  

Similarly, differentiation with respect to 8, yields, after simplification, 

y(A  sin y ,  A o  cos y )  cos ( o t  + O N )  dt = 0 (2.2-25)
T A"S2"*0 

Equations (2.2-24) and (2.2-25) can be combined in the form 

y (A  sin y ,  Aw cos y)[sin (wt + ON)+j cos ( o t  + O,)] dt 

=j -o 
p- i%~-

2rlw 

y (A  sin y,Am cos y)e-jot dt 
77A 

which can in turn be rearranged to yield ( y  = o t )  

By comparison with Eq. (2.2-20) we conclude that the describing function 
defined as the first harmonic gain of a nonlinearity driven by a sinusoid also 
minimizes the mean-squared error in the linearizing approximation. 

For the general theory of quasi-linear approximation developed in Chap. 1, 
minimum mean-squared approximation error was taken as the starting point. 
This defining condition permits the derivation of describing functions for 
nonlinearities driven by any form of input, whereas the first-harmonic-gain 
concept is applicable only to sinusoidal inputs. It was also shown there that 
the equivalent complex gain of a nonlinearity to a sinusoid input component 
in the presence of any other independent input components is the first 
harmonic gain of a pseudo-nonlinearity, defined by averaging over the effects 
of the other input components. If the input consists of a sinusoid only, 
this reduces to the first harmonic gain of the actual nonlinearity. 

S U M M A R Y  O F  DF F O R M S  

The DF has been written both in the form of a dynamic proportional plus 
derivative element [Eq. (2.2-14)] and in the form of a static complex gain 
[Eq. (2.2-20)]. These seemingly different linearizations can be at once 



reconciled by expanding the 
yields 

N ( A , o )  = - ' J y ( A  sin y ,  Aw cos y)e-3~ d y  
.rrA o 
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right-hand side of Eq. (2.2-20). Expansion 

r 2 n  

where n,(A,w) and nq(A,w), defined earlier in Eqs. (2.2-12) and repeated 
here for convenience, are 

nq(A,w) = - y ( A  sin y ,  Aw cos y )  cos y d y  (2.2-296) S" .rrA 0 

Observing the complex-gain point of view, it follows from Eq. (2.2-28) that 
n,(A,m) and nq(A,w) are the in-phase and quadrature gains of the nonlinearity. 
That is, An, is the in-phase (sin) component of the nonlinearity output, and 
An, is the quadrature (cos) component of the nonlinearity output, referred 
to the input. Hence the mnemonic use o f p  and q. 

Continuing, let us interpret the complex gain N(A,w)  in Eq. (2.2-28) as a 
linear operator which, acting upon a sinusoidal input x = A sin wt ,  gives the 
appropriately phased sinusoidal output. Calling s = dldt, this is equivalent 
to writing 

n.(A,w) N ( A , w )  = n,(A,w) + --- (2.2-30) 
Cc) 

which, of course, is precisely the result of Eq. (2.2-14). 
Summarizing the above discussion, we have the following useful DF 

representations for a nonlinearity : 

DF as a proportional plus derivative element 

DF as a complex gain 
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where the magnitude-phase angle representation is found according to 

p,(A,o) = d n , 2 ( ~ , w )  + n,2(A,o) 

the corresponding set of inverse relationships being 

Throughout the development thus far we have assumed a nonlinearity 
output which, in general, is a function of the input as well as its derivative(s). 
Certain computational simplifications occur when the nonlinearity is static, 
and additional computational ease results when the static nonlinearity is odd. 
For example: 

DF calculation for a general dynamic nonlinearity [y = y(x,i)] 

N(A,w) = - ' j z r y ( ~  sin y ,  A W  cos y)e-jY dy (2.2-36) 
nA o 

DF calculation fo r  a general static nonlinearity [y = ~ ( x ) ]  

sin y)e-jV dy 

DF calculation fo r  an odd static nonlinearity [y(x) = -J(-x)] 

2j " 
N(A) = y(A sin y)e-'Y dy 

Single-valued characteristics are termed memoryless; multivalued charac- 
teristics are said to possess memory. For all memoryless nonlinearities, 
n,(A,o) = 0. The ranges of integration can be further restricted. For 
example : 

DF calculation fo r  a general memoryless static nonlinearity 

2 "12 
N(A) = - y(A sin y) sin y dy 

nA /-.lz (2.2-39) 

DF calculation fo r  an odd memoryless static nonlinearity 

sin y) sin y dy 
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The remainder of this chapter is devoted to various aspects of the computa- 
tion of DFs in the complex-gain representation. The questions of DF 
usage, D F  accuracy, and D F  validity are deferred to the following chapter. 

2.3 DF CALCULATION FOR FREQUENCY-INDEPENDENT 
NONLINEARITIES 

In this section we deal with nonlinearities whose input-output characteristics 
fall into the class defined by 

Y =y w  

Such nonlinearities are static, displaying no dependence upon the input 
derivatives. At present, it is further required that the nonlinear charac-
teristics possess odd symmetry. This requirement is expressed as 

It  is to be noted that D F  determination for asymmetric nonlinearities is 
straightforward. D F  application in such instances, however, is confounded 
by the presence of a nonlinearity output bias whose presence is not accounted 
for in the D F  formulation. This difficulty may be overcome by artificially 
shifting the nonlinearity characteristic along its output axis to the point a t  
which an input sinusoid results in an unbiased output. A less artificial 
approach to this problem is taken in Sec. 6.6, however, in which such 
nonlinearities are dealt with directly.' 

GAIN-CHANGING ELEMENT 

The symmetrical gain-changing element with two slope discontinuities is 
shown in Fig. 2.3-la. One common mechanical system giving rise to such a 
force-displacement characteristic is the dynamic vibration mount, for which 
a (massless) spring arrangement is depicted in Fig. 2.3-lb. In terms of the 
spring constants defined in the illustration, it is clear that m, = 2k1 and 
m, = 2(k1 + k,). For this nonlinearity the actual response to a driving 
sinusoid and the corresponding first harmonic are shown in Fig. 2.3-2. 
Since the response is not frequency-dependent, the independent variable of 
the input and output graphs has been chosen as the angle y (where y = ot). 
There are two regions of interest, those in which y assumes different depend- 
encies upon x. Let us define the angle y1 according to 

A sin yl = 6 
or 

6 
y, = sin-' -

A 
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(a)  Input-output characteristic 

force) 

(b)  Parallel translation spring assembly 

Figure 2.3-1 Gain-changing nonlinear element. 

Then the two regions of interest are defined in terms of y ,  as follows 

We may proceed directly to the calculation of N(A) after Eq. (2.2-40). 

sin y )  sin y  d y  

-1 m,A sin2y  d y  + 
T A  o T A  vl 

4 '1 


= - [ (m,  - m2)S + m2A sin y ]  sin y  d y  
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Equations (2.3-1) and (2.3-3) define the D F  for the gain-changing non- 
linearity. These may be combined, with the result 

S + 2Jq]N (A) = 2(m1 m3 [sin-' + (2.3-4) 
i? A A 

Note that this result is valid only for A 2 6. For A < 6, N(A) = m,, 
which is the linear gain. 

I t  is worthwhile to observe that in deriving the D F  for this gain-changing 
nonlinearity we have simultaneously accomplished the D F  derivation for 
some simpler nonlinearities. For example, as can be seen from Fig. 2.3-la, 
setting m, = 0 results in the dead-zone characteristic; setting m, = 0 results 
in the saturation characteristic; setting m, = 0 and simultaneously m,6 = D, 
m,-+ oo, results in the ideal-relay characteristic; and, of course, setting 
m, = m, results in the linear-gain characteristic. Figure 2.3-3 illustrates 
each of the above-mentioned nonlinearities, together with the appropriate 
DFs as derived from Eq. (2.3-4). 

Figure 2.3-2 Input-output relationship for a gain-changing nonlinearity. 
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N ( A )  = m ,  A S S  

--
[ i n  -I ( )( )] + A > 6 

(a) Gain-changing element 

(b) Dead zone 

I (c) Saturation 

( d )  Ideal relay 

(e) Preload 

Figure 2.3-3 DFs for the gain-changing element and related nonlinearities. 
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Examination of the DFs for Fig. 2.3-3a to c reveals that a single functional 
form is recurrent. For this form we shall coin the name saturation 
function and the designation f (d/A), where 

A plot off (d/A) appears in Fig. 2.3-4. The ordinate scale is linear (rather 
than logarithmic, which form we shall find quite convenient in actual DF 
use) in order that the algebraic operations of addition and subtraction may 
be easily performed during DF calculation. Appendix A is an amplitude- 
ratio-decibel conversion table with which logarithmic DF representation 

Figure 2.3-4 Safurafion funcfion. 
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may be accomplished conveniently, wherever desired. In terms of the 
saturation function f (b/A), we have1 

Gain-changing element : 

Dead zone: 

Saturation: 

Observe that Fig. 2.3-4 is a normalized plot of the saturation DF; hence 
the name saturation function. 

GENERAL PIECEWISE-LINEAR ODD MEMORYLESS NONLINEARITY 

We are now in a position to  consider a fairly general case, namely, one 
where the nonlinear characteristic is any piecewise-linear odd memoryless and 
frequency-independent function., Figure 2.3-5 illustrates a typical four- 
segment characteristic (first quadrant only, eight segments in all). All 6;s 

This form of DF presentation was motivated by the work of Magnus (Ref. 36), who 
used a slightly less compact notation. See Graham and McRuer (Ref. 16) for details o f  
Magnus' presentation. 

A similar development is given by Gille et al. (Ref. 14). 

Figure 2.3-5 General piecewise-linear odd memoryless 
nonlinearity. 
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indicate abscissa breakpoints, and mi indicates the slope occurring in the 
range a,, < x I6,. The nonlinearity output y in terms of its input x can 
be written in the particular form 

O t ~ l 6 ~y = m , x + D  

6, < x 16 ,  y = (m, -m2)dl + m,x + D 
62 < x 63 y = (ml m2)6, + (m2-m3)6, + m3x + D (2.3-9) 
6,  < x Y = (m1 -m2)61 + (m, -m3)6, + (m, -m4)6,

+m4x + D 
As before, the input is taken as a sinusoid 

x = A sin y 

and we may directly compute the DF for various ranges of A. In the first 
range (0 < A 1dl),  behavior is like that of a preload nonlinearity. The 
D F  in this range is therefore as given in Fig. 2.3-3e. Continuing in other 
ranges, we note that the D F  can very conveniently be described in terms of the 
saturation function, f (6/A).  It  is readily verified that 

The reader may show that N(A) is appropriately defined over all A. Clearly, 
this sequence can be directly extended by induction to an n-segment non- 
linearity. Moreover, the actual magnitude of the composite nonlinearity 
D F  can be obtained easily by repeated use of Fig. 2.3-4. 

Example 2.3-1 Derive the D F  for the piecewise-linear nonlinearity containing dead zone, 
a linear band, and saturation (Fig. 2.3-6). 

Figure 2.34 Nonlinear characteristic with dead zone, a linear 
band, and saturation. 
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By observing that the more general nonlinearity of Fig. 2.3-5 is reducible to the specific 
case at hand under the value assignments 

M
D = O ,  m 2 = - , m , = m , = m , = O  

62 - 6, 
we obtain directly from Eq. (2.3-10) 

which takes on the following special values in the ranges indicated: 

0 < A I6, N(A) = 0 

QUANTIZER 

A very useful DF in the study of systems containing a linear analog-digital 
converter is that for the staircase, or quantizer, nonlinearity, shown in Fig. 
2.3-7. For all continuous inputs x, the output can assume only the discrete 
values 0, & D ,  f2D,  etc.; hence the name suggesting quantum jumps. 

r gain3Lineal 

Figure 2.3-7 Linear quantizer characteristic. 
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Call the abscissa breakpoints 61, d2, . . . ,6,, in a gesture of generality. 
Then the D F  can be determined as follows (for A > 6,): 

y(A sin y) sin y dy 

=?( [ l O s i n ~ d y + r  D s i n y d y + - . .  nD sin yl dy)+r2
n-A 

4 0  
--- (cos y1 + cos y, + .. . + cos y,) 

(2.3-12)TA 

Hence we determine that the D F  is given by 

0 < A  5 dl N(A) = 0 

A plot of the D F  for the linear quantizer, di = [(2i- 1)/2]h, where h is 
the uniform input breakpoint increment, is shown in Appendix B. Dotted 
lines indicate the DFs for quantizers of various numbers of output levels. 
The three-output-level case, for example, corresponds to the relay with 
dead-zone nonlinearity. With increasing numbers of output levels, the 
quantizer approaches a linear gain to an increasingly better degree; hence 
the magnitude of N(A) approaches unity. 

POLY NOMIAL-TYPE NONLlNEARlTlES 

Polynomial functions are particularly useful because of the relative ease with 
which they may be chosen to closely fit given nonlinear characteristics. The 
analytic process of curve fitting will not be discussed here, but may be 
found in a variety of texts.l Further, an experimental determination of 

See, for example, Ref. 40. 
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nonlinearity form may be well related to a polynomial fit, either by sinusoidal 
testing or growing harmonic exponential testing (Ref. 35). 

The input-output characteristic for an odd nth-order polynomial-type 
nonlinearity is of the form (n is a positive odd integer in this equation) 

The general term of Eq. (2.3-15) can b.e rewritten as (arbitrary n) 

which is an odd function of x. The DF for the general odd polynomial term 
is therefore computed by integrating over the interval 0< y < ~ / 2 ,as 
follows : 

y(A sin y) sin y dy 

cn(A sin y)" sin y dy 

where r(arg) is the gamma function of the indicated argument.l In the 
event that n is a positive odd integer, N(A) can be rewritten as 

If n is a positive even integer, we obtain the following expansion for N(A): 

4 n(n - 2)(n - 4) - . (2) An-l 
N(A) = Cn (n + l)(n - l)(n - 3) . - - (3) 

n is an even integer > 0 

Those properties of the gamma function required for use in Eq. (2.3-17) are 

r ( k  + 1) = k!  for integers k 2 0 

r ( k  + 1) = kr(k) for arbitrary k > -1 

and r(4) = G r ( i )  = r (2 )  = i 
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These results can be combined to form the D F  for the particular odd 
polynomial nonlinearity described by 

y = c,x + C,X 1x1 + c3x3+ c4x3 1x1 + c5x5+ ' - . (2.3-20) 

which is 

A plot of the D F  for a one-term odd polynomial nonlinearity appears in 
Appendix B. For values of n greater than unity, the nonlinear characteristic 
is of increasing slope with increasing input (hard). For values of n less than 
unity, the characteristic is of the saturating variety (soft). This accounts for 
the behavior of DF magnitude as a function of A. As n approaches zero, 
the odd polynomial characteristic approaches the ideal-relay characteristic; 
this bound is shown for comparison. 

H A R M O N I C  N O N L I N E A R I T Y  

Error-detecting synchros commonly used in ac servomechanisms are capable 
of continuous rotation as required to follow constant-angular-velocity 
command inputs. The gain characteristic of a synchro pair is a sinusoidal 
function of angular position following error. Thus, for the synchro pair, 
we may write 

y = M sin mx (2.3-22) 

where y is the ac output amplitude, and x is the input angular-position error. 
The DF for this harmonic nonlinearity is given by 

y(A sin y) sin y d y ~  

= sin (mA sin y) sin y, dy%lnf2 
rrA o 

where J,(mA) is the Bessel function of order one for real arguments. A plot 
of the D F  for this nonlinearity in Appendix B indicates regions of -180" 
phase shift, as well as regions of 0" phase shift. Boundaries of each region 
are given by zero crossings of the Bessel function, J,(mA). 

HYSTERESIS 

Electromagnetic current-actuated relays generally have different pull-in and 
drop-out input-current values. The nonlinear input-output characteristics 
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for such relays are, as a consequence, multivalued. A typical characteristic 
is given in Fig. 2.3-8. 

To compute the DF for this characteristic we employ the complex 
exponential form as follows : 

N ( A )  = - y ( A  sin y)e-j'+ dy
n A2J S"0 

Figure 2.3-8 Hysteresis characteristic with input and output waveforms. 
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S
where A sin yl = 6(1 - E) or y, = s i r 1 - (1 - E)

A 

The D F  can be rewritten in terms of the hysteresis characteristic parameters 
as 

Hence we see for the first time a nonlinearity giving rise to a D F  which is 
complex. Both the magnitude and phase of the D F  are functions of A. 
In general, multivalued characteristics will lead to complex DFs.l A 
normalized plot of D F  magnitude and phase angle is presented in Appendix B 
for several values of E. 

A special case of the nonlinear characteristic of Fig. 2.3-8 is the rectanguIar 
hysteresis characteristic, derived by setting E = 0. It  is frequently referred 
to as toggle because of its occurrence in mechanical spring-loaded toggle 
switches. The D F  for rectangular hysteresis is given by either of the 
following forms, derived from Eq. (2.3-24) or (2.3-25) by setting r to  zero. 

BACKLASH 

Backlash in gearing can be defined as the amount by which a tooth space 
exceeds the thickness of a mating tooth. A linear force motor engaging its 
load through a linkage with backlash b is shown in Fig. 2.3-9. The effect of 
backlash, which is ever-present in geared systems, is almost always destabi- 
lizing. For this reason antibacklash (spring-loaded) gearing is often em- 
ployed. Another approach to circumventing the destabilizing action of 
backlash in geared systems is to operate the motor with an output velocity 
bias. This approach is used in the turntable testing of high-quality gyro- 
scopes, for example, where under other circumstances the backlash between 
motor and turntable could introduce sufficient measurement error to invali- 
date the testing. 

Although there are multivalued characteristics for which n,(A) = 0. See Prob. 2-13. 
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x = o , y = o  
I 
I 
I 
I 
I -x = A sin or 

Motor 

I 

Figure 2.3-9 Linear motor driving a viscous friction plus inertia load 
through a linkage with backlash b. 

In order to develop the D F  for backlash in the system of Fig. 2.3-9, we 
consider two limiting cases. In the first of these the friction forces on the 
load are dominant; this is therefore referred to as friction-controlled backlash. 
In the second the load inertia forces are dominant; this is referred to as 
inertia-controlled backlash. In Sec. 2.4 the more general case, including both 
friction and inertia forces simultaneously, is treated. In that case a 
frequency-dependent DF results. In all cases we consider the motor an 
ideal drive in the sense that it provides a sinusoidal output displacement 
independent of load force requirements. 

Friction-controlled backlash In this case we take M = 0. A plot of 
the motor input motion, load output motion, and equivalent backlash 
characteristic is shown in Fig. 2.3-10. Let us note here that it is not suffi- 
cient merely to indicate that a certain amount of backlash is present in a given 

:d for 

\\ the case b / A  < 1 

Figure 2.3-10 (a) Waveforms for friction-controlled backlash. (b) Equivalent backlash 
characteristic. 
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situation; one must further specify the load dynamics in order to derive the 
equivalent backlash input-output characteristic. 

In this case the motor and load are in contact up to the point a t  which 
motor velocity reverses. Contact is not reestablished until the backlash is 
closed on the other side. Bouncing between motor and load is assumed 
negligible. The DF is computed according to 

y ( A  sin y)e-j~'  d y  

+ 1' ( A  sin + i)e-" dy] 
P1 2 

1 3  
= ;[j - Y l - 2 i1 --t) cos y1 + sin y ,  cos yl I 

- .1' [ 2  - 2 ( 1 ;)- sin ly, - cos2y1] (2.3-27) 
7r 

The angle y,, which defines the point at which the backlash is closed during 
the negative-velocity part of the cycle, is given by 

where r / 2  < y1 < n for 0 < b / A  < I ;  the arcsin is interpreted as an angle 
in the first quadrant. In terms of b / A  the DF can thus be rewritten as 

The real part of N(A)  can be further rewritten in terms of the saturation 
function [Eq. (2.3-5)],viz., 

%(A) = Re [N(A)I 

in which form its plotting is facilitated since use can now be made of Fig. 
2.3-4. The same expression for N(A)  results for values I < b / A  1 2 .  In 
that case 7r < yl 1 3n/2 ,  and the arcsin is interpreted as an angle in the 
fourth quadrant. A plot of the magnitude and phase angle of N(A),  
calibrated in b / A ,  is given in Fig. 2.3-12. 
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Inertia-controlled backlash In this case we set D = 0. Input-output 
waveforms and the resulting equivalent backlash characteristic are presented 
in Fig. 2.3-11. Here we see evidence that the specification of backlash is 
indeed incomplete unless the load description is also included. 

At the values y = n r ,  n = 0, 1,2,  . . . , the motor imparts to the load its 
maximum velocity, &,, = Aw = y. Motor-load separation then occurs, 
and the load coasts with constant velocity until the backlash is closed on the 
other side. The angle y, at  which the backlash is again closed is given by 

y1 = sin y, + -b 
A (2.3-31) 

Again we assume bouncing between motor and load to be negligible. The 
D F  is computed according to 

N(A) = a y(A sin y)e-j~ dy 
2-i 1" 

1 1 
= - (.rr f2 sin y, - y, - sin y, cos y,) -j - (I  - cos y,)2

r r 

(2.3-32) 
See Fig. 2.3-12. 

If, instead of taking either M = 0 or D = 0 in each of the above D F  
calculations, we were to allow M and D to be nonzero, it would still be true 
that in the limit of increasing input frequency (o-+ a)inertia forces would 

Figure 2.3-11 (a) Waveforms for inertia-controlled backlash. (b) Equivalent backlash 
characteristic. 
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DF phase ON degrees 

Figure 2.3-12 DFs for friction-controlled and inertia-controlled backlash. 

predominate, and in the limit of decreasing input frequency (w +0) friction 
forces predominate. Hence we might expect the two curves of Fig. 2.3-12 
to form the upper and lower bounds of the DF for backlash with both inertia 
and friction, as input frequency is varied. We indeed observe this behavior 
in the frequency-dependent-backlash D F  calculation of Sec. 2.4. 

HARMONIC GENERATION 

The amount by which the output of a sinusoidally forced nonlinearity differs 
from its first harmonic has been called the residual, or remnant. Let us 
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consider the actual output harmonic content associated with several of the 
nonlinearities whose output first harmonics have been previously determined. 

General piecewise-linear odd memoryless nonlinearity The ratio of 
output kth-harmonic amplitude to input amplitude is (y i  = sin-l 6JA) 

Q(r; 6'= sin k y  dy + y sin ky,dy + 
nA 

+[Py sin k y  dy1 
2 sin (k - 1)y, sin (k f-l )y l  

= -[(ml -4( k - l  + k i - I  )7rk 

sin (k - 1)y, 
+ 

k + l  

where the values of y for the different intervals of integration are given by 
Eq. (2.3-9). The result presented above is valid only for A > 6,, but its 
alteration to accommodate either larger or smaller regions is straightforward. 

' Saturation The ratio A,/A for this nonlinear characteristic can be derived 
from the above result by choosing 

n?, = m m,= m, = m, = 0 (2.3-34) 

from which it follows that 

+sin [(k- 1 )  sin-' (6/A)] sin [(k+ I )  sin- ( / 
A 7rk k - 1  k + l  ' (2.3-35) 

Harmonic-amplitude ratios are plotted up to the seventh-harmonic term in 
Fig. 2.3-13. 

Polynomial-type nonlinearities Consider a one-term nth-order poly-
nomial, n odd. The harmonic-amplitude ratio is found according to 

A 4
2= -1 y(A sin y)  sin k y  dy
A %-A 0 

1112 

-- sinn y sin k y  dy4cn~n-'l 

7r 

cnAn-' sin (kn/2)I'(n+ 1)
--

2"-lr[(n + k + 2)/2]r[(n- k + 2)/2] 
(2.3-36) 
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Figure 2.3-13 Output harmonic content for saturation. 

Results of the related integration for an nth-order odd nonlinearity, n even, 
are identical. Using this expression, the total output harmonic content of 
many-term polynomial nonlinearities may be built up, one frequency at a 
time. As expected, A, = 0 for k even. Only odd harmonics exist. When 
n is odd, we see that all harmonics of order greater than n are zero. 

A, = 0 for all k > n, n odd (2.3-37) 

This can be deduced from Eq. (2.3-36) with the aid of the fact that the value 
of the gamma function for all negative-integer arguments is infinite. For 
n even, however, all output odd harmonics exist. 
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Symmetrical square-law nonlinearity This characteristic is defined by 

Y = cex 1x1 

Harmonic content is given by 

c2A k odd1 2 1 = F[(4 + k) /2]r[(4- k)/2] 

whence we find 

Cubic nonlinearity Proceeding as before, 

y = c3x3 
and we find 

Harmonic nonlinearity This characteristic is given by 

y = M sin mx 

Hence the output kth harmonic is 

1112 


Ak = 4 o y(A sin y)  sin k y  dy x 1 
sin (mA sin y)  sin k y  dy 

X 

where Jk(mA) is the Bessel function of order k. The harmonic-amplitude 
ratios of interest are 

These functions are highly oscillatory and reach peaks of up to 70 in the 
interval 0 < mA I10. For our present purposes it is sufficient to study 
the behavior for large mA, in which case the Bessel function is well approxi- 
mated by 
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Applying this asymptotic representation to the harmonic ratios above, we 
find 

which clearly indicates the presence of substantial harmonic content in the 
range m A  > 1 .  

Rectangular hysteresis For this characteristic we easily obtain 

IAkl = - y ( A  sin y)e-jkW dyIYS," 

4 0--- k odd 
7rk 

from which the harmonic ratios are 

Generalization For monotonically increasing nonlinear characteristics 
the kth-harmonic output amplitude ratio IAk/A,I generally is on the order of 
Ilk. Characteristics which are nonmonotonically increasing are apt to 
possess substantially higher harmonic-amplitude ratios. In most cases, 
calculation is readily executed. 

In the final analysis it is the transfer function of the linear elements of a 
closed-loop system which emphasizes or deemphasizes loop harmonic content. 
For those cases in which the loop linear elements contain no resonance peaks 
at frequencies beyond the nonlinearity input fundamental frequency, DF 
linearization of a nonlinearity may generally be employed without excessive 
error due to the presence of unaccounted-for harmonics. This topic will be 
further pursued in the following chapter. 

2.4 DF CALCULATION FOR FREQUENCY-DEPENDENT 
NONLINEARITIES 

In this section we examine some methods for dealing with dynamic 
nonlinearities, those for which outputs depend upon inputs and their 
derivatives. As discussed previously, they are represented as 
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Y 

F Figure 2.4-1 Simple linear mass-spring system. 

At any single input frequency a D F  magnitude vs. phase-angle plot for 
varying input amplitude may be constructed, with different such plots 
belonging to different input frequencies. Thus it will be observed that DFs 
for dynamic nonlinearities may be generally portrayed by a onefold infinity 
of graphs, with input frequency as a free parameter. 

LINEAR MECHANICAL SYSTEM 

As an example of a very simple system possessing a frequency-dependent 
DF, consider the single-degree-of-freedom mass-spring system of Fig. 2.4-1. 
For a sinusoidal force input 

F = A sin cot (2.4-2) 

the differential equation of motion of the mass-spring assembly is given by 

my + ky  = A sin o t  (2.4-3) 

for which the exact forced solution is 

Aim sin cot'= klm - co2 

Consequently, the D F  is given by 

where wn2 = k/m.  The amplitude dependence cancels, with the result 

which is a function of w for fixed system parameters. In fact, the D F  
presented is precisely the linear transfer function of the system from force 
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input to displacement output. That the D F  reduces to the linear transfer 
function was pointed out earlier in the text. 

BACKLASH W I T H  A VISCOUS FRICTION PLUS INERTIA LOAD 

In its most common form, backlash refers to the play in a pair of otherwise 
rigidly mounted gears or analogous mechanical linkages. Systems con- 
taining gears which have backlash often chatter (limit-cycle) in the absence 
of an input, a phenomenon which leads to wearing of the gears, and perhaps 
yet more backlash. Backlash is different from hysteresis (which leads to 
frequency-independent DFs) in that the nonlinearity output waveform is not 
strictly determined by its input waveform, independent of load properties 
(friction, inertia, stiffness). For example, if a pure inertia load is driven by 
a gear train with backlash, the input-output relationship is quite different 
from that which exists for a pure dashpot load. This behavior was demon- 
strated in Sec. 2.3, where the limiting cases of friction- and inertia-controlled 
backlash were studied. 

We presently turn our attention to the system of Fig. 2.3-9, where both 
friction and inertia forces act simultaneously. Typical input and output 
waveforms are illustrated in Fig. 2.4-2, with the corresponding inertia- and 
friction-controlled output waveforms for reference. The angle y, denotes 

Inertia and viscous friction 

Figure 2.4-2 Input-output waveforms for backlash with viscous friction 
plus inertia load. 
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the point of motor-load separation, which occurs when the motor decelerates 
faster than the load. Using the fact that the velocities of motor and load are 
identical a t  separation, one can show that y, is given by 

1 
ys = t a r 1  -

Y 

where 

Contact is reestablished when the backlash is again taken up. This occurs 
at y = y,, where 

which, after insertion of x(y,) and y(yc)in terms of system parameters, can 
be rewritten in the form 

The in-phase and quadrature components of the DF are found by the now- 
familiar integration schemes, yielding 

n,(A,w) = - y(A sin y ,  A o  cos y) sin y dy 
TA  S"0 

1 
-- sin2y, - sin y, cos yc (2.4-11 )
Y 
 I 


and 

sin y,  Aw cos y) cos y dy 

+ -1 
sin y, cos y,I (2.4-12)

Y 
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The magnitude and phase of the D F  are both functions of A and o; viz., 

A plot of p,(A,o) versus BN(A,o) for various A and o (the latter charac- 
terized by y) is shown in Appendix B. The whole family of DF loci, as 
expected, are contained between the curves for the inertia- and friction- 
controlled backlash cases. Unlike the friction-controlled backlash non-
linearity, the response of inertia-controlled backlash need not be zero for all 
A < b/2. In fact, the D F  can be defined for all A > bl3.72. Beyond this 
point, in the direction of decreasing A, both subharmonics and aperiodic 
responses occur. Correspondingly, all intermediate cases shown can be 
extended somewhat to values of b/A in excess of 2.0, but less than 3.72. 
Studies of this extension, as well as the cases of backlash with load inertia 
and coulomb friction, both with zero and nonzero input-velocity biases, are 
available in the literature (Refs. 11, 16, 44, 46, 52). 

NONLINEAR CLEGG INTEGRATOR 

The Clegg integrator (Refs. 5, 33) represents an attempt to synthesize a 
nonlinear circuit possessing the amplitude-frequency characteristic of a 
linear integrator while avoiding the 90" phase lag associated with the linear 
transfer function. Clearly, no linear circuit can accomplish this objective 
since the linear integrator is itself a minimum-phase network. 

A functional diagram of the Clegg integrator, which switches on input 
zero crossings, is illustrated in Fig. 2.4-3a. Basically, operation consists of 
the input being gated through one of two integrators (the output of the other 
is simultaneously reset) in accordance with zero-crossing detector (ZCD) 
commands. Implementation of this integrator, including gates and ZCD, 
can be effected with four diodes, four RC networks, and two operational 
amplifiers (Ref. 5). Input and output waveforms are shown in Fig. 2.4-3b. 
In the interval 0 < y < .rr, the output is (y = o t )  
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Input Adder -
x gate Y 

u

4 

ZCD Reset gate 
(a) 

Figure 2.4-3 (a)  Nonlinear Clegg integrator. (b)Associated input-outpit waveforms. 

The D F  is thus given by 

N(A,w) = -/>(A sin y ,  A W  cos y)e+v dy 'J 
7rA 0 

" A  
= 2/ - (1 - cos y)e-j* dy 

TA o w 

and it is evident that the (in this case) undesired dependence of the DF  upon 
input amplitude has been successfully avoided, with the result 
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This D F  has associated with it approximately 52" less phase lag than that for 
the linear integrator. Its merit as a system compensation network from the 
point of view of loop stability is thus apparent. 

Harmonic content in the sinusoidally forced output of this nonlinear 
integrator follows directly from the observation that the output is the sum of 
a square wave of amplitude A / o  and a negative cosine wave of amplitude 
Alcu, both of equal period. The output kth harmonic is therefore due 
entirely to the square-wave portion 

4A
A, = - k odd 

Tro k  

and the harmonic-amplitude ratios of interest are 

which are typical, as previously noted. 

FREQUENCY- INDEPENDENT DFs F R O M  FREQUENCY-DEPENDENT 
N O N L l N E A R l T l E S  

We have seen that the frequency-dependent D F  can be treated by a simple 
extension of the basic D F  concept. The result of this approach is a family 
of D F  loci, perhaps with frequency as a convenient family parameter. 
Although it is true that analysis can now proceed within this framework, 
one additional approach is well worth consideration. The intent of this 
method is the divorce of linear frequency-dependent and nonlinear amplitude- 
dependent parts of an otherwise amplitude- and frequency-dependent 
nonlinear element. Although such a division cannot always be effected, 
when it can, the resultant nonlinear element will be far simpler to handle. 
In particular, the D F  associated with the nonlinearity will be frequency- 
independent (Ref. 3). 

Consider the four-terminal nonlinear RC network of Fig. 2.4-4a. For the 
purpose of demonstration we shall work under the condition that the non- 
linear network must be treated as shown and that no physical reorganization 
within some larger system is possible. Given the voltage-current charac- 
teristic e2 = N1(i2) of the network diode, we may proceed to manipulate 
system variables to obtain the desired end result. Laplace transform 
notation is most convenient in this endeavor. In this form the equations 
governing system behavior are 
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I + RCs4F-P
-

(b)  Block diagram of equivalent system 

(c) Another block diagram of equivalent system 

Figure 2.4-4 Frequency-dependent nonlinearity and two equivalent 
block-diagram representations. 

which may easily be represented by block diagram, as in Fig. 2.4-43. This 
block diagram contains only linear frequency-dependent elements and non- 
linear frequency-independent elements. The desired separation has been 
accomplished since the isolated nonlinear part of the block diagram is 
frequency-independent. If the nonlinear RC network were part of a larger 
and otherwise linear system, the linear feedback branch of this network 
could be associated with the rest of the system to yield a final block diagram 
in which there would exist a single amplitude-dependent nonlinearity plus 
other purely linear elements. Analytic studies of this system would be in 
terms of a frequency-independent DF,  considerably more convenient than 
equivalent studies using the corresponding frequency-dependent DF. 

For the above example it is also possible to generate another useful block 
diagram. This new configuration contains a frequency-independent 
nonlinearity in the feedback path, which happens to be the inverse of the 
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nonlinearity representation given before, namely, i2= N,(e2). Figure 
2.4-4c depicts this arrangement. Stout (Ref. 50) has shown that any two- 
part system containing a single explicit nonlinearity can always be reduced 
to four topologically identical and mathematically equivalent block diagrams. 
In these diagrams the nonlinear element may appear as either a forward or 
feedback block, with its input and output in either a normal or reversed 
cause-effect relationship. 

DF CALCULATION FOR IMPLICIT DYNAMIC NONLlNEARlTlES 

Many nonlinearities are best described in terms of input-output differential 
equations. This is as opposed to some explicit dynamical description, for 
example. Under this circumstance the nonlinearity output waveform is not 
generally available directly in terms of its input, as has previously been 
assumed. The implicit dynamical relationship between input and output 
must therefore be dealt with by some special means. In order to demon- 
strate one useful method of approach, we compute the D F  for the dynamic 
nonlinearity described by 

y + 3y2j +y = x (2.4-20) 

where x and y are the nonlinearity input and output, respectively. To find 
y( t )  in response to the harmonic input 

x = A sin (wt + 6)  (2.4-21) 

one must possess the general solution of Eq. (2.4-20). Generally speaking, 
the solutions to nonlinear differential equations are unknown. Rather than 
obtain y( t ) ,  and thus derive the D F  by performing the usual Fourier expan- 
sion, we now are forced to seek an alternative approach. An artifice 
frequently worthwhile is to assume for the form of the nonlinearity output 

y = Ysinwl 

and to solve for the sinusoidal input which results in this output. First-
harmonic approximation allows execution of this method. 

Inserting Eqs. (2.4-21) and (2.4-22) into (2.4-20), we get 

-w2Y sin wt + 3wY3sin2wt cos wt + Y sin wt = A sin (wt + 6)  (2.4-23) 

The second term on the left-hand side may be expanded into first- and 
third-harmonic portions, viz., 

sina cot cos wt = cos wt - cos 3wt (2.4-24) 

Dropping the third-harmonic term, Eq. (2.4-23) becomes 

( 1  - 03Y sin wt + %wY3cos wt = A sin (wt + 6) (2.4-25) 
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Collating coefficients of sin wt and cos wt yields the following equations in 
A, Y, 8: 

( 1  - w2)Y= Acos 8 

gwY3= A sin 8 

Equations (2.4-26) may be simultaneously solved to yield O(A,o), Y(A,w). 

Equation (2.4-27) is an implicit relationship for Y(A,w), which, onceobtained, 
may be used to find 8(A,w) given explicitly by Eq. (2.4-28). The first- 
harmonic gain of the nonlinearity is given by 

Equations (2.4-27) and (2.4-28) may be rewritten in terms of pN and O N .  

Thus the frequency-dependent DF has been determined. These results are 
identical with those presented elsewhere (Ref. 39), the same nonlinear 
equation in that instance treated by a method of Stoker (Ref. 49). Observe 
that the exact output first harmonic has not been calculated; rather, an 
approximation to it has been arrived at. Better approximations can be 
generated by assuming a more complete description of y in Eq. (2.4-22); 
however, the labor entailed rapidly increases. 

E X T E N S I O N S  O F  THE D F  C O N C E P T  

Another method for dealing with implicit dynamical nonlinearities has been 
developed by Klotter (Ref. 26), who replaces the Fourier harmonic concept 
of the D F  with a corresponding "Hamilton harmonic" concept. In par- 
ticular, he chooses the nonlinearity output amplitude and phase so as to 
minimize the integral whose Euler equation coincides with the given differen- 
tial equation. This process is somewhat analogous to minimizing the mean- 
squared error in conventional D F  formulation by selecting the Fourier series 
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representation of a nonlinearity output [Eq. (2.2-23)]. One significant dif- 
ference between the two methods is that the Fourier coefficients are fixed, 
independent of the degree of approximation employed, whereas the Hamilton 
harmonics depend in some way upon rejected higher harmonics (the residual). 
DFs generated by both methods are reported to show first-harmonic ampli- 
tude differences of the order of 10 percent. 

It  is possible to propose any number of other linearization schemes based 
upon a sinusoidal input. For example, the equivalent gain could be chosen 
to minimize the average approximation error or absolute magnitude of the 
error rather than mean-squared error as in D F  formulation. Although the 
above-mentioned alternatives do not appear to have any advantage over 
the DF, an "rms DF" proposed by Gibson and Prasanna-Kumar (Ref. 12) 
shows some promise in application to systems with odd single-valued non- 
linearities. It is defined by 

1 
[ y ( Asin y)IZ dy 

(2.4-3 1) 
(A sin y)2 dy 

That is, the equivalent sinusoidal output of the nonlinearity is chosen to have 
the same rms value as the actual output. Using the notation of Fig. 2.2-1, 
it is readily demonstrated that Eq. (2.4-31) can be written as (odd nonlinearity) 

Rankine and D'Azzo have proposed a "corrected conventional DF" based 
upon a truncated version of the rms DF,  as follows: 

In application to the study of a wide variety of systems, the corrected con- 
ventional D F  was found to be consistently more accurate than either the D F  
or rms DF,  although all results were, in fact, quite good (Ref. 43). 

Another mechanism for studying the limit cycle behavior of certain non- 
linear systems is the "elliptic describing function" (Ref. 24). It  is particularly 
interesting in that the limit cycle waveshape is determined after the amplitude 
and frequency have been found. This differs from other D F  methods where- 
in the waveshape is specified a priori. However, the computation associated 
with the elliptic-describing-function method and its practical restriction to 
single-valued odd static nonlinearities appear to rule it out as a generally 
useful analytical tool. 

For the remainder of this and the following two chapters we confine our 
consideration to the conventional DF. 
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2.5 SYNTHESIS OF DFs 

The D F  for a complex nonlinearity can be synthesized by vector addition of 
the DFs for a group of similar nonlinearities whoseparallel combination has 
the identical input-output characteristic. The method relates to vector 
addition of sinusoids and is exact within its own framework. Series-con-
nected nonlinearities do not support the same generalizations. These cases 
are treated in what follows. 

Consider n nonlinearities N,, N,, . . . ,N,  in parallel such that their total 
output y(x) is 

y ( 4  =y,(x) +y,(x) + - - . +Y&) 

It then follows that the D F  for the composite nonlinearity is given by 

LJrr[t
N(A) = y,(A sin y) e-'v dy
~ T Ao i-1 I 


Thus the D F  for the composite nonlinearity is the sum of DFs for the indi- 
vidual nonlinearities comprising the composite nonlinearity. Since, in 
general, the D F  for the ith nonlinearity is a complex quantity, Eq. (2.5-2) 
represents a vector addition. In the case of frequency- and amplitude- 
dependent elemental nonlinearities, the D F  for a parallel combination is 
given as 

by direct analogy with Eq. (2.5-2). Once again the sum implies a vector 
addition. 

One may assess the harmonic content of the composite nonlinearity output 
merely by performing appropriate vector additions on the individual har- 
monic terms of like frequency, again in a manner completely analogous to 
that of Eq. (2.5-2). 

An example of the synthesis of a complex nonlinearity from simpler forms 
is the construction of the nonrectangular hysteresis-type nonlinearity (Fig. 
2.5-la) from the rectangular-hysteresis and linear-gain functions (Fig. 
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(a)  (b)  

Figure 2.5-1 Synthesis of a simple hysteresis charxteristic (a)  from the elemental forms of 
rectangular hysteresis and linear gain (b). 

2.5-lb). By executing two simple sketches the doubtful reader may convince 
himself of the validity of this maneuver, observing that the sinusoidally 
forced output of the simple nonrectangular-hysteresis element and the sum of 
sinusoidally forced outputs of the rectangular-hysteresis and linear-gain 
elements are identical. Accordingly, we have [Eq. (2.3-26)] 

N U )  = N l ( 4  + N&4) 
rectangular linear 
hysteresis gain 

In terms of a real and imaginary part, or a magnitude and phase angle, the 
composite DF may be directly rewritten as follows :I 

X exp (-j t a r 1  4D(d/A) 
[~Dv'I - (S/A)2 + "Am 

The expression giving the real and imaginary parts of N(A)  is least cumbersome of the 
two presented in Eq. (2.5-5). Since this is generally the case for complex nonlinearities 
with memory, Appendix B lists DFs in terms of their real and imaginary parts. 
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The harmonics generated by this composite nonlinearity are given by Eq. 
(2.3-49) and are due entirely to rectangular hysteresis, the linear gain generat- 
ing no output harmonic content whatever. 

Now consider the case of series-connected nonlinearities. To demonstrate 
the complexity of this situation, Fig. 2.5-2 illustrates the series connection of 
friction-controlled backlash followed by a limiter with dead zone. The two 
possible overall characteristics resulting for various ranges of A are also 
presented. It  is at once evident that the decomposition, or synthesis pro- 
cedure, is all but hopeless. No simple results exist comparable with the case 
of parallel-connected nonlinearities. 

The question arises as to whether any simplified solution for the D F  exists. 
In partial answer to this question, Gronner (Ref. 19) has shown that the exact 
D F  for friction-controlled backlash followed by dead zone and an approxi- 
mate D F  computed directly by multiplication of the DFs of the individual 
nonlinearities compare quite well. Such a procedure implicitly assumes that 
the output of the first nonlinearity may in some sense be considered sinusoidal, 
in order to utilize the D F  of the second nonlinearity in subsequent overall 
approximate D F  calculation. This could be the case if, for example, the 
original nonlinearities were separated by a linear filter which, during analysis, 

Figure 2.5-2 Series-connected nonlinearities. Elemental froms (a)  and the corresponding 
overall characteristics for (b)  < A < y and (c) A > y.  
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was associated with the first nonlinearity. Unfortunately, generalizations 
regarding expected accuracy of D F  calculation using this procedure for a 
variety of nonlinearity combinations are not available. 

2.6 TECHNIQUES FOR APPROXIMATE CALCULATION 
O F  T H E  DF 

Given any nonlinear characteristic, the corresponding D F  can theoretically 
be evaluated using the techniques of previous sections. However, in practice, 
nonlinear characteristics are often known only by measurement of a physical 
system, precise analytic relationships remaining unknown. The D F  can still 
be evaluated following an analytic curve fit of the experimentally derived 
characteristic, but time required to effect this curve fit and subsequent D F  
calculation may be unwarranted, considering that analysis following deriva- 
tion of the D F  is of an approximate nature. In fact, even given a nonlinear 
characteristic of precise analytical definition, an approximate D F  calculation 
can often be justified on the grounds of approximate ultimate analysis. 
Furthermore, exact calculation can be tedious and lengthy. 

To begin with, it may be possible to evaluate the D F  experimentally. If a 
system nonlinearity can be isolated and excited with a sine wave of known 
amplitude and frequency, the application of a harmonic analyzer to the non- 
linearity output directly yields all information necessary for D F  specification. 
Instruments have been designed which automatically compute the frequency 
response of nonlinear systems based upon measurement of the evoked re- 
sponse to harmonic excitation (Refs. 4, 21, 57). Here we concern ourselves 
with approaches which can be executed with pencil and paper, starting at the 
point just after determination of the nonlinear characteristic. Thus we seek 
approximate methods for expediting hand calculation of the DF. 

The most straightforward approach to graphic D F  evaluation, starting with 
the nonlinear characteristic, is point-by-point derivation of the nonlinearity 
output waveform and harmonic analysis of it by direct area measurements 
(such as discussed in Ref. 8). Clearly, this is not the best manner of calcula- 
tion. It  would be more desirable, for example, to work directly with the 
nonlinear characteristic, without ever having to graph the actual output 
waveform. Several methods of computation having this virtue are con- 
sidered. Let us restrict our attention to odd static symmetric nonlinearities. 

PIECEWISE-LINEAR APPROXIMATION 

The first approach deserving of mention simply prescribes an n-segment 
piecewise-linear fit to any given nonlinear characteristic. The D F  for the 
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resultant nonlinear characteristic is either given by the general formula of 
Eq. (2.3-lo), if that characteristic is memoryless, or can be derived by the 
methods of Sec. 2.3, if the characteristic possesses memory. Three or four 
segments per quadrant usually result in acceptable accuracy. The extension 
of this point of view to a piecewise-polynomial approximation is evident. 

ANALYTIC SOLUTION OF T H E  DF INTEGRAL 

A basis for the approximate analytic evaluation of the D F  consists in the 
development of an approximate expansion of the exact D F  integral formula- 
tion (Refs. 36, 51). Consider the case of a single-valued characteristic, for 
which the D F  is given by 

2 "12 
N ( A )  = -1 y ( A  sin y )  sin y d y  (2.6-1)

.rrA 4 2 

Under the transformation 

u = sin y du = cos y d y  (2.6-2) 

Eq. (2.6-1)can be rewritten as 

The evaluation of a related integral is 

This result can be demonstrated as exact for the case of g(u) as the series 
expansion 

g(u) = a,u2 + a3u3+ a,u4 + a,u5 

which, by virtue of the required connecting identity 

implies a nonlinear characteristic of the form 

From Eqs. (2.6-4)and (2.6-5)it follows that the D F  is given by 
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For characteristics which are odd, this reduces to 

The significance of these simple results can be demonstrated by example. 

Example 2.6-1 (a) Find the D F  for the odd polynomial characteristic 

Applying the formula obtained above, we get 

The exact D F  [Eq. (2.3-21)]is repeated for convenience: 

In analyzing the result, first observe that the terms in c,  and c, are exact. This is expected 
because of the formulation of g(u).  The terms in c2 and c ,  are in error by less than 4 
percent. Sinceg(u) does not imply any odd terms of even power in the nonlinear charac- 
teristic, these results are encouraging. The term in c,  is in error by 10 percent. 

(b)  Find the D F  for an ideal-relay characteristic 

By Eq. (2.6-7)we get the result 

The exact result is 

from which we observe that only a 4.5 percent error has been incurred in using the 
approximate D F  calculation. This excellent result can be explained in part by noting 
that the same approximate D F  formulation as in Eqs. (2.6-6) and (2.6-7) is obtained for 
characteristics given by 

b-
y ( ~ )= -2 + b0 + blu + b,u2 

U 

where the leading term is seen to be discontinuous (more precisely, undefined) at the 
origin. Again the result is encouraging. 

Another approximation to N(A) ,  derived in a manner similar to that 
presented above and yielding even better accuracies, is (odd nonlinearity, 
see Ref. 46) 

(2.6-8) 

By application to Example 2.6-1 it is verified that approximation errors using 
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this result are smaller than those previously obtained. Odd polynomials of 
odd exponent up to 9 may be treated with zero error. Calculation of the DF 
for saturation by either Eq. (2.6-7), the first approximation, or (2.6-8), the 
second approximation, yields errors of less than 5 percent, the latter with 
smaller error over most of the range considered. Approximately computed 
DFs for saturation, increasing gain, relay with dead zone, and harmonic 
nonlinearities are shown with their exact counterparts in Fig. 2.6-1. 

Exact D F  
----- First approximation 

Second approximation 

Figure 2.6-1 Approximately computed DFs for (a) saturation, (b)increasing gain, (c) relay 
with dead zone, and ( d )  harmonic nonlinearity. 
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The approximate D F  solution presented in this section has been generalized 
to encompass arbitrary nonlinear characteristics with memory. Allowing 
the double-valued y ( x )  to be separated into y l (x ) ,  valid when x is decreasing, 
and y,(x),  valid when x is increasing, it has been shown (Ref. 38) that 

- 1 - (2.6-9a)+yl (5)+y2(f) (- ) Y (- )I 
and 

For symmetric characteristics [ y l (x )= - y2 ( -x ) ]  these expressions become 

and 

These results reduce to Eq. (2.6-7)in the case of memoryless characteristics. 

N U M E R I C A L  S O L U T I O N  O F  T H E  D F  I N T E G R A L  

For simplicity, the following development is limited to odd nonlinear charac- 
teristics which may have memory. The D F  can be written as 

N ( A )  = - y ( A  sin y )  sin y  d y  +j - y (A  sin y )  cos y  d y  
.rrA ST T A  1'o o 

These integrals can be approximated by finite sums. In so doing, it is helpful 
to write separately the integrals over two ranges in y ,  from 0 to 7712 and from 
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3712 to rr. Thus 

2 w=r/2 y=r  

N(A) = [Jws0 Y(A sin y) d(-cos y) +Jw = r / 2  y(A sin y) d(-cos y )I 

2 n12+j [2y(A sin yi) S(sin y,) + f y(A sin y,) S(sin yi) 
i=l i=n/2+1 I 

It has been assumed that an n-term summation is performed, with n even. 
Taking equal increments of S(-cos y,) in the n, integration, and equal 
increments of S(sin y,) in the n, integration, Eq. (2.6-12) can be rewritten as 

2 n/2 

77A IS(--cos y)l [z sin yi) N(A) a - i=ly(A sin y3 + 5 y ( ~
i=n/2+1 I 

The minus sign in the second set of brackets results from the fact that the 
sign of the increment S(sin y,) is negative for y increasing from rr/2 to rr 
(that is, i increasing from n/2 + 1 to n). 

Both of the uniform increment magnitudes, IS(-cos y)J and IG(sin y)J, 
can be seen to have the value 2/n. Calling 

ui = sin yi 

we can write the compact expression 

which is the result sought. The term S, accounts for the sign change in the 
n, integration; viz., 

Observe that ui goes from 0 to 1 and back to 0,as y varies from 0 to 7712 to 
rr. The values of u, give the points at which y(Au) is evaluated. These 
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-Piecewise-linear approximation over 
( x ,  ,x , )  with the same endpoints. 

y (x )  = Y I  + k G - x , )  

Figure 2.6-2 Approximation for numerical integration over one segment 
of the nonlinear characteristic. 

points should be chosen so that the summations of Eq. (2.6-14) are good 
approximations to the corresponding integrals of Eq. (2.6-11). One reason- 
able way to choose the ui is to require that the approximation to each integral 
be exact for an "average" function, perhaps a function which is linear over 
each summation interval and has the same endpoints (Fig. 2.6-2). The result 
of this choice for the ui is just the well-known trapezoidal integration rule. 

Consider the terms relevant to the nu integration. From Eq. (2.6-11) 
we have, for a typical summation interval (ul,u2), 

and from Eq. (2.6-14) the corresponding term is 

164 y ( 4 )  = (u2 - u1)l v l  + k&i - u1)l 

Equating these quantities yields 

' I  + U 2u .  = --- for the nu integration
2 
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A parallel development for the n, integration results in the determination 
that1 

for the n, integration 

In each case u, is the value of u, intermediate to ul and u,, at  which y(AuJ is 
evaluated. The values of ui for n = 10 and n = 20 are given in Table 2.6-1. 

TABLE 2.6-1 VALUES O F  ui FOR DF DETERMINATION 
BY TRAPEZOIDAL INTEGRATION 

n, integration I no integration 

These integration formulas are particularly easy to use with a desk calcu- 
lator since no multiplication is required to scale the values of y(Aui), which are 
read from a graph of y(x) or computed. Using 10 increments per unity inter- 
val in u in each summation, one can expect D F  computation accuracies of 
better than 5 percent. 

PLACING BOUNDS O N  T H E  DF 

In any D F  calculation a convenient independent check is certainly desirable. 
The general shape of the DF as a function of A can be easily determined by 
inspection of the nonlinear characteristic in question. Quantitative estimates, 
we shall see, are also feasible. 

Consider an arbitrary nonlinear function y ( x )  for which we seek D F  infor- 
mation, and two associated curves y,(x) and y,(x). The latter curves are 

This is readily shown with the aid of the identities: 
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required to bound y (x )  from above and below, respectively, but are otherwise 
arbitrary. Odd single-valued characteristics are assumed for convenience. 
The following inequality then holds for all x in the range of interest. 

where A, defines the highest value of x of interest. This implies the integral 
inequality 

sin y )  sin y d y  <C;(A I""l / P y , ( ~  sin y )  sin yi d y  < y , ( ~sin y) sin y d y  

(2.6-16) 
which may be rewritten as the D F  inequality 

where N,(A) and N,(A) are the DFs belonging to y , (x)  and y,(x),  respectively. 
Hence bounds may be placed on N(A)  provided only that N,(A)  and N,(A) 
are known. 

The most convenient functions y , (x )  and y , (x )  are simply straight lines 
'passing through the origin. If the lines have slopes k, and k,, then we have, 
simply, 

k t  < N(A) < k ,  (2.6-18) 

Figure 2.6-3 illustrates the application of this simple bounding process to a 
typical nonlinear characteristic. Stronger bounds on N(A) can be obtained 
by choosing better upper and lower nonlinearity bounding functions. 

2.7 DF INVERSION 

Given the D F  data n,(A) and n,(A), one may be interested in a nonlinearity 
to which this corresponds. This inverse D F  question is of interest in the 
evaluation of a physical device whose harmonic response has been experi- 
mentally obtained, and in the synthesis of a nonlinear compensatory network 
whose D F  has been prescribed. It is intuitively clear that since the D F  is an 
incomplete measure of a nonlinear characteristic, D F  inversion is necessarily 
nonunique. For example, one can readily find nonlinear characteristics with 
memory which possess DFs identical with other characteristics with no 
memory (cf. Prob. 2-13). Below, we consider several cases where n,(A) = 0 
and the recovered memoryless nonlinearity is odd. The extension to asym- 
metric nonlinearities is straightforward, although of less interest. For a 
treatment of the more general case in which n,(A) # 0, the reader is referred 
to  Gibson et al. (Ref. 13), where an analytic DF inversion solution is 
developed. 
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k r e g i o n  of interest 1 

Figure 2.6-3 Bounding of the DF (b) by,forming a straight-line 
envelope for the nonlinear characteristic (a). 

POLYNOMIAL-BASED DF INVERSION 

Assume that a polynomial curve fit to N(A)  has been accomplished. The 
result is 

In Sec. 2.3 it was demonstrated that for an odd-polynomial nth-order non- 
linearity the DF is given by 

By comparing Eqs. (2.7-1) and (2.7-2) we immediately establish the result 

which defines an odd-polynomial nonlinearity. 
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PIECEWISE-LINEAR-BASED DF INVERSION 

In Sec. 2.3 it was shown that the D F  for an odd n-segment, piecewise-linear 
memoryless nonlinearity can be written in the form 

If M # 0, assume that it is removed from Eq. (2.7-4) by a curve fit in the 
vicinity of A m 0. The nonlinear characteristic to be determined thus has 
a discontinuity of value 2M at the origin. Now let the DF-data abscissa be 
divided into equal subdivisions of width 6. By computing N(A)  for 
A = 612, 3612, 5612, etc., the following set of equations results from the 
repeated application of Eq. (2.7-4): 

This set is easily solved by applying the solution for m,from the first equation 
to the second, then using the resulting solution for m, in the third, and 'so 
forth. For sufficiently small 6 ,  the nonlinearity so determined will closely 
represent the required nonlinearity. If the nonlinearity for which the D F  
was determined actually was piecewise-linear, and if 6 happens to be chosen 
at a value which is some integral fraction of each breakpoint, 6,, of the actual 
nonlinearity, the piecewise-linear function determined by means of Eq. (2.7-5) 
will be precisely the actual nonlinearity. 

APPROXIMATE DF INVERSION 

By repeated application of the approximate D F  formula [Eq. (2.6-7)] it is 
possible to secure an approximate D F  inversion. 



100 S INUSOIDAL- INPUT DESCRIBING F U N C T I O N  (DF) 

Starting with the first equation above, and inserting in it the values for y(A), 
y(2A), y(4A), etc., appearing in subsequent equations, we easily generate the 
result 

which is expressible as 
m 

Y (A) 3A 2 (-2)iN (2i+'A) 
i = O  

Had we instead employed the relationships 

and proceeded as in Eq. (2.7-7), the corresponding result would be 

Equations (2.7-8) and (2.7-10) are the approximate DF inversion formulas 
sought. The former is applied to a given set of DF data when the values of 
N(A) decrease with increasing values of A, thus leading to  a rapidly converg- 
ing series for y(A). In the opposite case, Eq. (2.7-10) is employed. In 
either case the resulting function is y(x). 

Example 2.7-1 Given the DF data N ( A )  = 4 D / r A ,  employ Eq. (2.7-10) to find a 
corresponding y ( x ) .  

In this case one must proceed with some care to ensure that the series expansion for 
y ( A )  converges. Consider the replacement of Eq. (2.7-10) by 

y ( A )  w lim 
€-1 .t=O 
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Inserting the given D F  data, we now get 

6 0  "O 
-.--lim 2 ( - ~ ) i  

= € 4 1 i,0 

6D 1 
--- lirn -

a 
 1 + c 

The reason for the particular form chosen for Eq. (2.7-1 1) is at once evident, since without 
it (and the understanding that c approaches 1 from below), the resulting infinite series 
would have been the alternating series 1 - 1 + 1 - 1 + 1 - . . . ,etc. 

Interpreting the result as an odd single-valued nonlinearity, it follows that the charac-
teristic is described by 

which the reader from the outset knew to be an ideal-relay characteristic. The inversion 
is thus in error by 4.5 percent. Aside from cases where N(A) is inversely proportional to 
A (such as in this example), no special precaution need be taken, and Eqs. (2.7-8) and 
(2.7-10) can be freely employed. 

Up to this point we have developed the facility to calculate DFs for a very 
wide class of nonlinearities. In the following chapter we turn our attention 
to  the use of these DFs in the study of nonlinear feedback systems. 
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PROBLEMS 

2-1. Show by use of the perturbation method that the first-order corrected fundamental 
component of the solution to the problem of a mass on a nonlinear spring 

subject to the initial conditions 

is given by 

2-2. Show by use of the method of slowly varying amplitude and phase that the solution 
to Prob. 2-1 is 

x = A, cos wt 

2-3. By use of the method of Krylov and Bogoliubov, show that the approximate transient 
solution to Van der Pol's equation 

x - €(I - xZ).f + X = 0 
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is given by 

where A, and 8, define the initial state of the system. Discuss the relationship 
between the system steady state and its initial conditions. 

2-4. Derive the D F  for an odd quantizer nonlinearity with arbitrarily spaced breakpoints 
6, and arbitrary output levels Di. 

2-5. Derive the overall D F  for the following chain of elements: ideal relay-integrator- 
ideal relay. The integrator gain is K, and the relay drive levels are fD. 

2-6. By noting that (rotary) coulomb friction is a torque-velocity phenomenon, show 
that the D F  relating input rotation angle to output torque is 

where T is the coulomb-friction magnitude, and A is the input-angle amplitude. 
Using this result, find the D F  (angle input-angle output) for springcoupled 

coulomb friction (massless case), and compare it with that for spring-coupled 
viscous friction. 

What is the D F  for inertia with coulomb friction (torque input-angle output)? 
2-7. A useful technique for'obtaining DFs for functionally characterized nonlinearities 

is to generate the power series of these functions in order to apply D F  results already 
developed for polynomials. Using this technique, find DFs for the following 
nonlinear characteristics, and discuss the range of validity of each: 

(a) y = tanh-I x 
(b) y = 1 - e-1.1 

sin x 
(c) y = -

1x1 
(d) y = x cos x 

2-8. Obtain the D F  and third4 ,onic amplitude ratio for the nonlinear characteristic 
of Fig. 2-1, such as might correspond to an optical-tracker error signal as a function 
of tracker misalignment in a satellite attitude control system. (Hint: Approximations 
may prove expedient.) 

X 

y = sin x - a , < x , < a  

elsewhere 

Figure 2-1 Optical-tracker error characteristic. 
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2-9. In determining the D F  for a dynamic element of the form 

is it legitimate to simply observe the block-diagram equivalence of Fig. 2-2, and 
hence conclude the relationship 

where N,(A) is the D F  for the static nonlinearity f (x )?  

z Y =f(k) 
;f@) > 

Figure 2-2 Series dynamic nonlinearity. 

2-10. Find the D F  for the parallel-connected dynamic nonlinearity system of Fig. 2-3. 
How would you recommend testing this two-port system to experimentally determine 
parameters a,, Dl, a,, and D,, knowing a priori the form of the nonlinearity? 

Figure 2-3 Parallel dynamic nonlinearity. 

2-1 1. The nonlinear element described by 

y + y = x  

is imbedded in a larger system to be analyzed by D F  methods. Find the D F  for 
this nonlinear element. 

2-12. Find and graph the D F  for the nonlinear element of Fig. 2-4. By also plotting DFs 
for the two limiters (drawn dotted), show that the original D F  is bounded above and 
below. 
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Figure 2-4 Nonlinearity with linear zone and abrupt limiting. 

2-13. (a) Derive the D F  for the nonlinear characteristic with memory of Fig. 2-5, and 
hence demonstrate that it is non-phase-shifting. 
(b) Synthesize the same D F  by parallel addition of several memoryless nonlinearities, 
and hence demonstrate that D F  inversion is indeed not unique. 

Figure 2-5 Nonlinear characteristic with memory. 

2-14. In a certain torque feedback servo loop, the torquer input current is derived from a 
current supply with a piecewise-linear limiter characteristic (input breakpoints f8 
and output saturation levels +D) .  The torque generator has an odd square-law 
characteristic from input current to output torque. Show that the D F  from current- 
supply input command to torque-generator output torque is 
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2-15. Show that the exact D F  for the nonlinear chain illustrated in Fig. 2-6 is given by 

Sw ?l 
e-jnl2 for -< -

DIK - 2 

6w n 
for -> -

DIK 2 

and compare this with the result obtained by multiplying the DFs of the individual 
elements of the chain. Under what conditions does D F  multiplication yield an 
acceptable solution? 

Figwe 2-6 Dynamic multiple-nonlinearity chain. 

2-16. One form of slowly saturating nonlinear characteristic is governed by Froelich's 
equation 

X 

y = l + c l x l  

Plot the appropriately normalized D F  for this characteristic, and compare it with the 
D F  for a limiter with the same slope at the origin and the same peak output level. 
Discuss the shape of characteristic and D F  for the nonlinearity 

for values n < 1 and n > 1. 
2-17. The Chebyshev polynomial of order k is given by 

(a)  Show that the kth-harmonic amplitude in the output of a sinusoidally forced 
static single-valued nonlinearity y(x)  can be written in the form (k 2 1) 

where A is the input amplitude. 
(b) Next, develop a method1 for recovering the nonlinear characteristic from its 

Described by D. P. Atherton: Determination of Nonlinearity from the Harmonic 
Response, Electronics Letters, London, vol. 2 ,  no. 4 (April, 1966), p. 152. 
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harmonic response by expanding the nonlinearity in the form 

and using the orthogonality relationship 

2-18. Prove the relationship 
S 

Im [N(A)]= --
7rA2 

where S is the area enclosed by y(x) as x varies from zero to A to -A and back to 
zero, and thereby establish from this point of view that memoryless nonlinearities 
possess only real DFs. (Hint: A contour integral may be helpful.) 

2-19. Show that the rms D F  and corrected conventional D F  for a relay with dead-zone 
nonlinearity are given by ( A  > 6 )  

2-20. Show that the D F  for a flip-flop with first-order dynamic response is given by (see 
Fig. 2-7): 

~ ( 1 )= A sin wtI , 
/ Y ( ' )  

Exponential with time constant s 

t 

Figure 2-7 Flip-flop response to input sinusoid. 


