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In this recitation, we explore the Linear Quadratic Estimator (LQE) problem. 

1 Linear Quadratic Estimator 

1.1 Motivation 

In Topic 14, when discussing estimators, we pointed out that there is a duality between the 
regulator problem (choosing a feedback K to set the closed-loop poles of A − BK) and the 
estimator problem (choosing a feedback L to set the closed-loop poles of A − LC). We have 
also talked at length about designing an optimal feedback K using the Linear Quadratic 
Regulator (LQR) problem, whose parameters are the state matrix A, input matrix B, state 
weighting matrix Q, and input weighting matrix R. Thus, one might expect to be able to 
identify an “optimal” (in some sense) estimator using the dual quantities: AT , CT , and some 
matrices Q̃ and R̃. This is easily done in Matlab: 

K = lqr(A,B,Q,R) 
L = (lqr(A’,C’,Q,R))’ 

But, what exactly is this “optimal” estimator? In what sense is it optimal? And how are the 
Q̃ and R̃ matrices supposed to be selected? This is the Linear Quadratic Estimator (LQE) 
problem, and is discussed below. (Notes adapted from Prof. How’s 16.323 materials.) 
You already knew how to design LQE estimators from Topic 14; the purpose of this 

recitation is to provide context, aiding in the selection of Q̃ and R̃ matrices. 

1.2 Deriving LQE 

Consider the standard state space model, now augmented with multiple sources of noise: 

ẋ = Ax + Bu + w, (1) 
y = Cx + v. (2) 

Here w is a process noise, modeling uncertainty in the system model (e.g., wind disturbance), 
while v is a sensing noise, modeling uncertainty in the measurements (e.g., a poor rate gyro). 
We typically assume that w(t) and v(t) have zero mean, such that E[w(t)] = E[v(t)] = 0. 
We will model the noises as uncorrelated, Gaussian white random noises, meaning there is 
no correlation between the noise at one time instant and another: 

E[w(t1)w(t2)
T ] = Rww(t1)δ(t1 − t2), 

E[v(t1)v(t2)
T ] = Rvv(t1)δ(t1 − t2), 

E[w(t1)v(t2)
T ] = 0. 

We write these noises as w(t) ∼ N (0, Rww) and v(t) ∼ N (0, Rvv), where the notation 
N (a, Pa) indicates a Gaussian noise with mean a and covariance matrix Pa. The covariance 
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represents the “spread” of the distribution – a large covariance corresponds to a broad dis
tribution, representing a larger uncertainty. By contrast, a low covariance corresponds to a 
distribution tightly distributed around the mean. 
Recall that our estimator takes the form 

ẋ̂ = Ax̂+ Bu + L(y − ŷ), (3) 
ŷ = Cx̂. (4) 

We form the estimation error (x̃ = x − x̂) dynamics, now incorporating the new noise 
terms in (1)-(2): 

ẋ̃ = [Ax + Bu + w] − [Ax̂+ Bu + L(y − ŷ)] 
= Ax̃+ w − L(Cx + v − Cx̂) 
= (A − LC)x̃+ w − Lv 

This equation of the estimation error explicitly shows the conflict in the estimator design pro
cess. The estimator must balance between the speed of the estimator decay rate, governed by 
Re[λi(A−LC)], and the impact of the sensing noise v through the gain L. In particular, fast 
state reconstruction requires a rapid decay rate, which typically requires a large L. However, 
this tends to magnify the effect of v on the estimation process. (The effect of the process 
noise is always there.) The Kalman filter developed below provides an optimal balance 
between the two conflicting problems, for a given “size” of the process and sensing noises. 
Presumably, our optimal estimator should minimize the estimation error x̃(t) over time in 

some sense. Suppose our objective is to design an estimator x̂(t) which minimizes the trace 
of the mean square value of the estimation error: 

min J = trace(Q(t)) 

s.t. Q(t) = E {x(t) − x̂(t)}{x(t) − x̂(t)}T . 

If we further assume the estimator is a linear function of the measurements y, it can be 
shown that the solution to this problem is the estimator (3)-(4), where 

L(t) = Q(t)CT R−1 ,vv Q(t) � 0, 

Q̇(t) = AQ(t) + Q(t)AT + Rww − Q(t)CT R−1CQ(t).vv 

Note that x̂(0) and Q(0) are assumed to be known, such that this differential equation in Q 
can be solved forward in time. This is called the Kalman-Bucy filter, or the linear quadratic 
estimator (LQE). 
An increase in Q(t) corresponds to increased uncertainty in the state estimate. The dif

ferential equation in Q̇ has three contributions: 

• AQ + QAT is the homogeneous part 
• Rww is an increase attributed to the process noise 
• QCT R−1CQ is a decrease attributed to measurements vv 

The estimator gain L(t) = Q(t)CT Rvv 
−1 is a feedback on the innovation, y − ŷ. If the un

certainty about the state is high, then Q(t) is large, and so the innovation is weighted more 
heavily (by increasing L). On the other hand, if the measurements are very accurate (such 
that Rvv is low), the measurements are also heavily weighted. 
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1.3 Steady-State LQE 

As with the LQR problem, the covariance of the LQE quickly settles down to a steady-state 
value Q, independent of Q(0). It is computed by solving the algebraic Riccati equation 

0 = AQ + QAT + Rww − QCT R−1CQ,	 (5)vv 

L = QCT R−1 .	 (6)vv 

This is the version of LQE we have referred to in this course, and that you will use in Lab 2. 
Now, what are the assumptions on this LQE problem? (compare to the LQR assumptions) 

1. The matrix Rww must be positive semidefinite, i.e. Rww � 0. This should make sense, 
since noise cannot have “negative” variance. We may also write Bww in (1) instead of w, 
in which case we typically assume Rww � 0. This formulation allows the dimension of w 
to differ from the dimension from x, which can be useful. 

2. The matrix	Rvv must be positive definite, i.e. Rvv � 0. Even if your sensors are sup
posedly perfect, you should always incorporate a small positive value for this covariance; 
otherwise the last term in (5) blows up. 

3. The solution Q to the algebraic Riccati equation is always symmetric, such that QT = Q. 
4. If (A, Bw, C) is stabilizable and detectable, then the correct solution of the algebraic 

Riccati equation is the unique solution Q for which Q � 0. 
5. If (A, Bw, C) is also controllable, then Q � 0. 

With this, the full duality with LQR is now in plain view: 

(LQR LQE)⇔ 

A AT ⇔ 

B CT ⇔ 

K LT ⇔ 
P Q⇔ 
Q Rww ⇔ 
R Rvv ⇔ 
Cz Bw⇔ 

So, ultimately, how should Rww and Rvv be selected? Ultimately, it comes down to which you 
trust more, your model or your measurements. (Similar to LQR, there is no point in scaling 
up both – all that matters is the relative values of the two matrices.) If you have a great sys
tem model measured by poor sensors, you would probably choose Rvv to be larger than Rww. 
Similarly, if the dynamics are poorly modeled but well-observed, you would probably choose 
Rww to be larger than Rvv. Despite the role of Rww and Rvv as the noise covariances, for this 
course it is more useful to think of them simply as design knobs, much like Q and R in LQR. 

Aside: Even though LQE can be performed in Matlab via the lqr command, using the 
previously-discussed duality, there actually is an lqe command you can use: 

L	 = lqe(A,G,C,Q,R) 

Here A = A, G = Bw, C = C, Q = Rww, and R = Rvv. 
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