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16.323 Lecture 2 

Nonlinear Optimization 

• Constrained nonlinear optimization 

• Lagrange multipliers 

• Penalty/barrier functions also often used, but will not be discussed here. 

Figure by MIT OpenCourseWare.
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Constrained Optimization


•	 Consider a problem with the next level of complexity: optimization 
with equality constraints 

min F (y) 
y 

such that f(y) = 0 

a vector of n constraints 

•	 To simplify the notation, assume that the p-state vector y can be 
separated into a decision m-vector u and a state n-vector x related to 
the decision variables through the constraints. Problem now becomes: 

min F (x, u) 
u 

such that f(x, u) = 0 

– Assume that p > n otherwise the problem is completely specified 
by the constraints (or over specified). 

•	 One solution approach is direct substitution, which involves 

– Solving for x in terms of u using f 

– Substituting this expression into F and solving for u using an 
unconstrained optimization. 

– Works best if f is linear (assumption is that not both of f and F 
are linear.) 
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•	 Example: minimize F = x1
2 + x2

2 subject to the constraint that 
x1 + x2 + 2 = 0 

– Clearly the unconstrained minimum is at x1 = x2 = 0 

– Substitution in this case gives equivalent problems: 

min F̃2 = (−2 − x2)
2 + x 2 

2 
x2 

or 
min F̃1 = x1

2 + (−2 − x1)
2 

x1 

for which the solution (∂F̃2/∂x2 = 0) is x1 = x2 = −1 
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Figure 2.8: Simple function minimization with constraint.


•	 Bottom line: substitution works well for linear constraints, but pro

cess hard to generalize for larger systems/nonlinear constraints. 
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Lagrange Multipliers 

•	 Need a more general strategy - using Lagrange multipliers. 

•	 Since f(x, u) = 0, we can adjoin it to the cost with constants 

λT = λ1 . . . λn 

without changing the function value along the constraint to create 
Lagrangian function 

L(x, u, λ) = F (x, u) + λT f(x, u) 

• Given values of x and u for which f(x, u) = 0, consider differential 
changes to the Lagrangian from differential changes to x and u: 

∂L ∂L 
dL = dx + du 

∂x ∂u 

where ∂L = ∂L ∂L (row vector) ∂u ∂u1 ∂um 
· · · 

Since u are the decision variables it is convenient to choose λ so that • 
∂L ∂F �

+ λT ∂f = 
∂x 

≡ 0	 (2.1) 
∂x ∂x 

∂F 
� 
∂f 
�−1 

⇒	λT = − 
∂x ∂x 

(2.2) 

•	 To proceed, must determine what changes are possible to the cost 
keeping the equality constraint satisfied. 

– Changes to x and u are such that f(x, u) = 0, then 

∂f ∂f 
df = dx + du ≡ 0	 (2.3) 

∂x ∂u 
∂f −1 

∂f ⇒	dx = − 
∂x ∂u 

du (2.4) 
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Then the allowable cost variations are • 
∂F ∂F 

dF = 
∂x 

dx + 
∂u 

du � 
∂F 
� 
∂f 
�−1 

∂f ∂F 
� 

(2.5) 

= − 
∂x ∂x ∂u 

+ 
∂u 

du � � 

= 
∂F 
∂u 

+ λT ∂f 
∂u 

du (2.6) 

∂L ≡ 
∂u 

du (2.7) 

•	 So the gradient of the cost F with respect to u while keeping the 
constraint f(x, u) = 0 is just 

∂L 
∂u 

and we need this gradient to be zero to have a stationary point so 
that dF = 0 ∀ du = 0� . 

•	 Thus the necessary conditions for a stationary value of F are 

∂L 
=	 0 (2.8) 

∂x 
∂L 

=	 0 (2.9) 
∂u 
∂L 

=	 f(x, u) = 0 (2.10) 
∂λ 

which are 2n + m equations in 2n + m unknowns. 

•	 Note that Eqs. 2.8–2.10 can be written compactly as 

∂L 
=	 0 (2.11) 

∂y 
∂L 

=	 0 (2.12) 
∂λ 

– The solutions of which give the stationary points. 
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Intuition 

•	 Can develop the intuition that the constrained solution will be a point 
of tangency of the constant cost curves and the constraint function 

– No further improvements possible while satisfying the constraints. 

•	 Equivalent to saying that the gradient of the cost ftn (normal to 
the constant cost curve) ∂F/∂y [black lines] must lie in the space 
spanned by the constraint gradients ∂f/∂y [red lines] 

– Means cost cannot be improved without violating the constraints. 

– In 2D case, this corresponds to ∂F/∂y being collinear to ∂f/∂y 

•	 Note: If this were not true, then it would be possible to take dy in 
the negative of the direction of the component of the cost gradient 
orthogonal to the constraint gradient, thereby reducing the cost and 
still satisfying the constraint. 

– Can see that at the points on the constraint above and blow the 
optimal value of x2 
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Figure 2.9: Minimization with equality constraints: shows that function and cost 
gradients are nearly collinear near optimal point and clearly not far away. 

1 1

f(x1, x2) = x2 − ((x1)3 − (x1)2 + (x1) + 2) = 0 and F = 2

1 xT 
1 2 

x


Figure 2.10: Zoomed in plot. 
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1 1

f(x1, x2) = x2 − ((x1 − 2)3 − (x1 − 2)2 + (x1 − 2) + 2) = 0 and F = 1 xT x
2 1 2


Figure 2.11: Change constraint - note that the cost and constraint gradients are 
collinear, but now aligned 
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•	 Generalize this intuition of being “collinear” to larger state dimensions 
to notion that the cost gradient must lie in the space spanned 
by the constraint gradients. 

– Equivalent to saying that it is possible to express the cost gradient 
as a linear combination of the constraint gradients 

– Again, if this was not the case, then improvements can be made 
to the cost without violating the constraints. 

•	 So that at a constrained minimum, there must exist constants such 
that the cost gradient satisfies: 

∂F ∂f1 ∂f2 ∂fn 

∂y 
= −λ1 

∂y 
− λ2 

∂y 
− · · · − λn 

∂y 
(2.13) 

−λT ∂f =	 (2.14) 
∂y 

or equivalently that 
∂F 

+ λT ∂f = 0 
∂y ∂y 

which is, of course, the same as Eq. 2.11. 
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Constrained Example 

•	 Minimize F (x1, x2) = x1
2 +x2

2 subject to f(x1, x2) = x1 +x2 +2 = 0 

– Form the Lagrangian 

L	� F (x1, x2) + λf (x1, x2) = x1
2 + x2

2 + λ(x1 + x2 + 2) 

– Where λ is the Lagrange multiplier 

•	 The solution approach without constraints is to find the stationary 
point of F (x1, x2) (∂F/∂x1 = ∂F/∂x2 = 0) 

– With constraints we find the stationary points of L 

x1 ∂L ∂L 
y = , = 0, = 0 

x2 ∂y ∂λ 

which gives 

∂L 
=	 2x1 + λ = 0 

∂x1 
∂L 

=	 2x2 + λ = 0 
∂x2 
∂L 

=	 x1 + x2 + 2 = 0 
∂λ 

•	 This gives 3 equations in 3 unknowns, solve to find x1 
� = x2 

� = −1 

•	 The key point here is that due to the constraint, the selection of x1 

and x2 during the minimization are not independent 

– The Lagrange multiplier captures this dependency. 

•	 Difficulty can be solving the resulting equations for the optimal points 
(can be ugly nonlinear equations) 
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Inequality Constraints 

• Now consider the problem 

min F (y) (2.15) 
y 

such that f(y) ≤ 0 (2.16) 

– Assume that there are n constraints, but do not need to constrain 
n with respect to the state dimension p since not all inequality 
constraints will limit a degree of freedom of the solution. 

• Have similar picture as before, but now not all constraints are active 

– Black line at top is inactive since x1 + x2 − 1 < 0 at the optimal 
value x = [1 − 0.60] it does not limit a degree of freedom in ⇒ 
the problem. 

– Blue constraint is active, cost lower to the left, but f1 > 0 there 

Figure 2.12: Cost and constraint gradients shown 
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With x1 + x2 − 1 ≤ 0, both constraints are active 

Figure 2.13: Other cases of active and inactive constraints 
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•	 Intuition in this case is that at the minimum, the cost gradient must 
lie in the space spanned by the active constraints - so split as: 

∂F � ∂fi � ∂fj 
∂y 

= − λi
∂y 

− λj 
∂y 

(2.17) 
i	 j 
active inactive 

– And if the constraint is inactive, then can set λj = 0 

•	 With equality constraints, needed the cost and function gradients to 
be collinear, but they could be in any orientation. 

•	 For inequality constraints, need an additional constraint that is related 
to the allowable changes in the state. 

– Must restrict condition 2.17 so that the cost gradient points in 
the direction of the “allowable side” of the constraint (f < 0). 
⇒	Cost cannot be reduced without violating constraint. 
⇒	Cost and function gradients must point in opposite directions. 

– Given 2.17, require that λi ≥ 0 for active constraints 

• Summary: Active constraints, λi ≥ 0, and Inactive ones λj = 0
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Given this, we can define the same Lagrangian as before L = F +λT f ,• 
and the necessary conditions for optimality are 

∂L 
∂y 

= 0 (2.18) 

∂L 
λi 
∂λi 

= 0 ∀i (2.19) 

where the second property applies to all constraints 

– Active ones have λi ≥ 0 and satisfy ∂L 
∂λi 

= fi = 0 

– Inactive ones have λi = 0 and satisfy ∂L 
∂λi 

= fi < 0. 

•	 Equations 2.18 and 2.19 are the “essence” of the Kuhn-Tucker the

orem in nonlinear programming - more precise statements available 
with more careful specification of the constraints properties. 

– Must also be careful in specifying the second order conditions for 
a stationary point to be a minimum - see Bryson and Ho, sections 
1.3 and 1.7. 

•	 Note that there is an implicit assumption here of regularity – that 
the active constraint gradients are linearly independent – for the λ�s 
to be well defined. 

– Avoids redundancy 
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Cost Sensitivity


•	 Often find that the constraints in the problem are picked somewhat 
arbitrarily - some flexibility in the limits. 

– Thus it would be good to establish the extent to which those 
choices impact the solution. 

•	 Note that at the solution point, 

∂L ∂F 
=	−λT ∂f = 0 

∂y 
⇒ 

∂y ∂y 

If the state changes by Δy, would expect change in the 

∂F 
Cost ΔF = Δy

∂y 
∂f 

Constraint Δf = Δy
∂y 

So then we have that 

ΔF = −λT ∂f 
∂y 

Δy = −λT Δf 

dF ⇒ 
df 

= −λT 

– Sensitivity of the cost to changes in the constraint func
tion is given by the Lagrange Multipliers. 

•	 For active constraints λ ≥ 0, so expect that dF/df ≤ 0 

– Makes sense because if it is active, then allowing f to increase will 
move the constraint boundary in the direction of reducing F 

– Correctly predicts that inactive constraints will not have an impact. 
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Alternative Derivation of Cost Sensitivity 

•	 Revise the constraints so that they are of the form f ≤ c, where 
c ≥ 0 is a constant that is nominally 0. 

– The constraints can be rewritten as f = f − c ≤ 0, which means 

∂f ∂f 
∂y 

≡ 
∂y 

and assuming the f constraint remains active as we change c 

∂f ∂f 
∂c 
≡ 
∂c 
− I = 0 

•	 Note that at the solution point, 

∂L ∂F 
=	−λT ∂f = −λT ∂f = 0 

∂y 
⇒ 

∂y ∂y ∂y 

To study cost sensitivity, must compute ∂F To proceed, note that •	 ∂c . 

∂F ∂F ∂y 
= 

∂c ∂y ∂c 

−λT ∂f ∂y 
= 

∂y ∂c 

−λT ∂f = 
∂c 

=	 −λT 
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Figure 2.14: Shows that changes to the constraint impact cost in a way that can be 
predicted from the Lagrange Multiplier. 
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Simple Constrained Example


• Consider case F = x1
2 + x1x2 + x2

2 and x2 ≥ 1, x1 + x2 ≤ 3 

• Form Lagrangian 

L = x1
2 + x1x2 + x2

2 + λ1(1 − x2) + λ2(x1 + x2 − 3) 

• Form necessary conditions: 

∂L 
= 2x1 + x2 + λ2 = 0 

∂x1 
∂L 

= x1 + 2x2 − λ1 + λ2 = 0 
∂x2 
∂L 

λ1 = λ1(1 − x2) = 0 
∂λ1 
∂L 

λ2 = λ2(x1 + x2 − 3) = 0 
∂λ2 

• Now consider the various options: 

– Assume λ1 = λ2 = 0 both inactive

∂L


= 2x1 + x2 = 0 
∂x1 
∂L 

= x1 + 2x2 = 0 
∂x2 

gives solution x1 = x2 = 0 as expected, but does not satisfy all 
the constraints 

– Assume λ1 = 0 (inactive), λ2 ≥ 0 (active)


∂L

= 2x1 + x2 + λ2 = 0 

∂x1 
∂L 

= x1 + 2x2 + λ2 = 0 
∂x2 
∂L 

λ2 = λ2(x1 + x2 − 3) = 0 
∂λ2 

which gives solution x1 = x2 = 3/2, which satisfies the con

straints, but F = 6.75 and λ2 = −9/2 
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– Assume λ1 ≥ 0 (active), λ2 = 0 (inactive)


∂L

= 2x1 + x2 = 0 

∂x1 
∂L 

= x1 + 2x2 − λ1 = 0 
∂x2 
∂L 

λ1 = λ1(1 − x2) = 0 
∂λ1 

gives solution x1 = −1/2, x2 = 1, λ1 = 3/2 which satisfies the 
constraints, and F = 0.75 

Figure 2.15: Simple example
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Code to generate Figure 2.12


1 %

2 % 16.323 Spr 2008

3 % Plot of cost ftns and constraints

4


5 clear all;close all;

6 set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)

7 set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)

8


9 global g G f

10 

11 F=[];g=[0;0];G=[1 1;1 2]; 
12 

13 testcase=0 
14 if testcase 
15 f=inline(’(1*(x1+1).^3-1*(x1+1).^2+1*(x1+1)+2)’); 
16 dfdx=inline(’(3*1*(x1+1).^2-2*1*(x1+1)+1)’); 
17 else 
18 f=inline(’(1*(x1-2).^3-1*(x1-2).^2+1*(x1-2)+2)’); 
19 dfdx=inline(’(3*1*(x1-2).^2-2*1*(x1-2)+1)’); 
20 end 
21 

22 x1=-3:.01:5;x2=-4:.01:4; 
23 for ii=1:length(x1); 
24 for jj=1:length(x2); 
25 X=[x1(ii) x2(jj)]’; 
26 F(ii,jj)=g’*X+X’*G*X/2; 
27 end; 
28 end; 
29 figure(1);clf 
30 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .29 .4 .5 1:1:max(max(F))]); 
31 xlabel(’x_1’ ) 
32 ylabel(’x_2’ ) 
33 hold on; 
34 plot(x1,f(x1),’LineWidth’,2); 
35 

36 % X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) 
37 xx=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc’); 
38 hold on 
39 plot(xx(1),xx(2),’m*’,’MarkerSize’,12) 
40 axis([-3 5 -4 4]); 
41 

42 Jx=[]; 
43 [kk,II1]=min(abs(x1-xx(1))) 
44 [kk,II2]=min(abs(x1-1.1*xx(1))) 
45 [kk,II3]=min(abs(x1-0.9*xx(1))) 
46 ll=[II1 II2 II3]; 
47 gam=.8; % line scaling 
48 for ii=1:length(ll) 
49 X=[x1(ll(ii));f(x1(ll(ii)))] 
50 Jx(ii,:)=(g+G*X)’; 
51 X2=X+Jx(ii,:)’*gam/norm(Jx(ii,:)); 
52 

53 Nx1=X(1); 
54 df=[-dfdx(Nx1);1]; % x_2=f(x_1) ==> x_2 - f(x_1) < =0 
55 

56 X3=[Nx1;f(Nx1)]; 
57 X4=X3+df*gam/norm(df); 
58 

59 plot(X2(1),X2(2),’ko’,’MarkerSize’,12) 
60 plot(X(1),X(2),’ks’,’MarkerSize’,12) 
61 plot([X(1);X2(1)],[X(2);X2(2)],’k-’,’LineWidth’,2) 
62 plot(X4(1),X4(2),’ro’,’MarkerSize’,12) 
63 plot(X3(1),X3(2),’rs’,’MarkerSize’,12) 
64 plot([X4(1);X3(1)],[X4(2);X3(2)],’r-’,’LineWidth’,2) 
65 if ii==1; 
66 text([1.25*X2(1)],[X2(2)],’\partial F/\partial y’ ) 
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67 text([X4(1)-.75],[0*X4(2)],’\partial f/\partial y’ )

68 end

69 end

70 hold off

71


72 %%%%%%%%%%%%%%%%%%%%%%%%

73


74 f2=inline(’-1*x1-1’);global f2

75 df2dx=inline(’-1*ones(size(x))’);

76


77 figure(3);gam=2;

78 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .3 .4 .5 1:1:max(max(F))]);

79 xlabel(’x_1’ );ylabel(’x_2’ )

80


81 xx=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc2’);

82 hold on

83 Jx=(g+G*xx)’;

84 X2=xx+Jx’*gam/norm(Jx);

85 plot(xx(1),xx(2),’m*’,’MarkerSize’,12)

86 plot(X2(1),X2(2),’mo’,’MarkerSize’,12);

87 plot([xx(1);X2(1)],[xx(2);X2(2)],’m-’,’LineWidth’,2)

88 text([X2(1)],[X2(2)],’\partial F/\partial y’)

89 hold off

90


91 hold on;

92 plot(x1,f(x1),’LineWidth’,2);

93 text(-1,1,’f_2 > 0’)

94 text(-2.5,0,’f_2 < 0’)

95 plot(x1,f2(x1),’k-’,’LineWidth’,2);

96 text(3,2,’f_1 < 0’)

97 if testcase

98 text(0,3,’f_1 > 0’)

99 else


100 text(1,3,’f_1 > 0’) 
101 end 
102 

103 dd=[xx(1) 0 xx(1)]’; 
104 X=[dd f(dd)]; 
105 df=[-dfdx(dd) 1*ones(size(dd))]; 
106 X2=X+gam*df/norm(df); 
107 for ii=3 
108 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’LineWidth’,2) 
109 text([X2(ii,1)-1],[X2(ii,2)],’\partial f/\partial y’) 
110 end 
111 X=[dd f2(dd)]; 
112 df2=[-df2dx(dd) 1*ones(size(dd))]; 
113 X2=X+gam*df2/norm(df2); 
114 %for ii=1:length(X) 
115 for ii=1 
116 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’k’,’LineWidth’,2) 
117 text([X2(ii,1)],[X2(ii,2)],’\partial f/\partial y’) 
118 end 
119 hold off 
120 

121 %%%%%%%%%%%%%%%%%%%%%% 
122 

123 f2=inline(’-1*x1+1’);global f2 
124 df2dx=inline(’-1*ones(size(x))’); 
125 

126 figure(4);clf;gam=2; 
127 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .3 .4 .5 1:1:max(max(F))]); 
128 xlabel(’x_1’);ylabel(’x_2’) 
129 

130 xx=fmincon(’meshf’,[1;-1],[],[],[],[],[],[],’meshc2’); 
131 hold on 
132 Jx=(g+G*xx)’; 
133 X2=xx+Jx’*gam/norm(Jx); 
134 plot(xx(1),xx(2),’m*’,’MarkerSize’,12) 
135 plot(X2(1),X2(2),’mo’,’MarkerSize’,12); 
136 plot([xx(1);X2(1)],[xx(2);X2(2)],’m-’,’LineWidth’,2) 
137 text([X2(1)],[X2(2)],’\partial F/\partial y’) 
138 hold off 
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139


140 hold on;

141 plot(x1,f(x1),’LineWidth’,2);

142 text(-1,3,’f_2 > 0’)

143 text(-2.5,2,’f_2 < 0’)

144 plot(x1,f2(x1),’k-’,’LineWidth’,2);

145 text(3,2,’f_1 < 0’)

146 if testcase

147 text(0,3,’f_1 > 0’)

148 else

149 text(1,3,’f_1 > 0’)

150 end

151


152 dd=[xx(1) 0 xx(1)]’;

153 X=[dd f(dd)];

154 df=[-dfdx(dd) 1*ones(size(dd))];

155 X2=X+gam*df/norm(df);

156 for ii=3

157 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’LineWidth’,2)

158 text([X2(ii,1)-1],[X2(ii,2)],’\partial f/\partial y’)

159 end

160 X=[dd f2(dd)];

161 df2=[-df2dx(dd) 1*ones(size(dd))];

162 X2=X+gam*df2/norm(df2);

163 %for ii=1:length(X)

164 for ii=1

165 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’k’,’LineWidth’,2)

166 text([X2(ii,1)],[X2(ii,2)],’\partial f/\partial y’)

167 end

168 hold off

169


170 %%%%%%%%%%%%%%%%%%%%%%%%%

171


172 if testcase

173 figure(1)

174 print -r300 -dpng mesh1b.png;%jpdf(’mesh1b’);

175 axis([-4 0 -1 3]);

176 print -r300 -dpng mesh1c.png;%jpdf(’mesh1c’);

177 figure(3)

178 print -r300 -dpng mesh2.png;%jpdf(’mesh2’);

179 figure(4)

180 print -r300 -dpng mesh2a.png;%jpdf(’mesh2a’);

181 else

182 figure(1)

183 print -r300 -dpng mesh1.png;%jpdf(’mesh1’);

184 axis([-.5 4 -2 2]);

185 print -r300 -dpng mesh1a.png;%jpdf(’mesh1a’);

186 figure(3)

187 print -r300 -dpng mesh4.png;%jpdf(’mesh4’);

188 figure(4)

189 print -r300 -dpng mesh4a.png;%jpdf(’mesh4a’);

190 end

191


192 %

193 % sensitivity study

194 % line given by x_2=f(x_1), and the constraint is that x_2-f(x_1) <= 0

195 % changes are made to the constraint so that x_2-f(x_1) <= alp > 0

196 figure(5);clf

197 contour(x1,x2,F’,[min(min(F)) .05 .1 .213 .29 .4 .6:.5:max(max(F))]);

198 xlabel(’x_1’)

199 ylabel(’x_2’)

200 hold on;

20 f=inline(’(1*(x1-2).^3-1*(x1-2).^2+1*(x1-2)+2)’);

20 dfdx=inline(’(3*1*(x1-2).^2-2*1*(x1-2)+1)’);

20 plot(x1,f(x1),’k-’,’LineWidth’,2);

20 alp=1;

20 plot(x1,f(x1)+alp,’k--’,’LineWidth’,2);

20


20 global alp

20 [xx1,temp,temp,temp,lam1]=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc3’);

20 alp=0;

210 [xx0,temp,temp,temp,lam0]=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc3’);
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211


212 [meshf(xx0) lam0.ineqnonlin;meshf(xx1) lam1.ineqnonlin]

213


214 legend(’F’,[’const=0, F^*=’,num2str(meshf(xx0))],[’const = 1, F^*=’ ,num2str(meshf(xx1))])

215


216 hold on

217 plot(xx0(1),xx0(2),’mo’,’MarkerSize’,12,’MarkerFaceColor’,’m’)

218 plot(xx1(1),xx1(2),’md’,’MarkerSize’,12,’MarkerFaceColor’,’m’)

219


220 text(xx0(1)+.5,xx0(2),[’\lambda_0 = ’,num2str(lam0.ineqnonlin)])

221


222 axis([0 2.5 -1 .5])

223 print -r300 -dpng mesh5;%jpdf(’mesh5’);


1 function F=meshf(X); 
2 

3 global g G 
4 

5 F=g’*X+X’*G*X/2; 
6 

7 end 

1 function [c,ceq]=meshc(X); 
2 

3 global f 
4 

5 c=[]; 
6 %ceq=f(X(1))-X(2); 
7 ceq=X(2)-f(X(1)); 
8 

9 return 

function [c,ceq]=meshc(X); 

global f f2 

%c=[f(X(1))-X(2);f2(X(1))-X(2)]; 
c=[X(2)-f(X(1));X(2)-f2(X(1))];

ceq=[];


return
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Code for Simple Constrained Example


1 figure(1),clf 
2 xx=[-3:.1:3]’; for ii=1:length(xx);for jj=1:length(xx); % 
3 FF(ii,jj)= xx(ii)^2+xx(ii)*xx(jj)+xx(jj)^2;end;end;% 
4 hh=mesh(xx,xx,FF);% 
5 hold on;% 
6 

7 plot3(xx,ones(size(xx)),xx.^2+1+xx,’m-’,’LineWidth’,2);% 
8 plot3(xx,3-xx,xx.^2+(3-xx).^2+xx.*(3-xx),’g-’,’LineWidth’,2);% 
9 

10 xlabel(’x_1’); ylabel(’x_2’); % 
11 hold off; axis([-3 3 -3 3 0 20])% 
12 hh=get(gcf,’children’);% 
13 set(hh,’View’,[-109 74],’CameraPosition’,[-26.5555 13.5307 151.881]);% 
14 

15 xx=fmincon(’simplecaseF’,[0;0],[],[],[],[],[],[],’simplecaseC’); 
16 hold on 
17 plot3(xx(1),xx(2),xx(1).^2+xx(2).^2+xx(1).*xx(2),’rs’,’MarkerSize’,20,’MarkerFace’,’r’) 
18 xx(1).^2+xx(2).^2+xx(1).*xx(2) 
19 

20 print -r300 -dpng simplecase.png; 
21 

1 function F=simplecaseF(X); 
2 

3 F=X(1)^2+X(1)*X(2)+X(2)^2; 
4 

5 return 

1 function [c,ceq]=simplecaseC(X); 
2 

3 c=[1-X(2);X(1)+X(2)-3]; 
4 ceq=0; 
5 

6 return 
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