
MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

16.323 Lecture 2

Nonlinear Optimization

• Constrained nonlinear optimization

• Lagrange multipliers

• Penalty/barrier functions also often used, but will not be discussed here.

Figure by MIT OpenCourseWare.

Spr 2008	 16.323 2–1
Constrained Optimization

•	 Consider a problem with the next level of complexity: optimization
with equality constraints

min F (y)
y

such that f(y) = 0

a vector of n constraints

•	 To simplify the notation, assume that the p-state vector y can be
separated into a decision m-vector u and a state n-vector x related to
the decision variables through the constraints. Problem now becomes:

min F (x, u)
u

such that f(x, u) = 0

– Assume that p > n otherwise the problem is completely specified
by the constraints (or over specified).

•	 One solution approach is direct substitution, which involves

– Solving for x in terms of u using f

– Substituting this expression into F and solving for u using an
unconstrained optimization.

– Works best if f is linear (assumption is that not both of f and F
are linear.)

June 18, 2008

Spr 2008	 16.323 2–2

•	 Example: minimize F = x1
2 + x2

2 subject to the constraint that
x1 + x2 + 2 = 0

– Clearly the unconstrained minimum is at x1 = x2 = 0

– Substitution in this case gives equivalent problems:

min F̃2 = (−2 − x2)
2 + x 2

2
x2

or
min F̃1 = x1

2 + (−2 − x1)
2

x1

for which the solution (∂F̃2/∂x2 = 0) is x1 = x2 = −1

x
1

x 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.8: Simple function minimization with constraint.

•	 Bottom line: substitution works well for linear constraints, but pro

cess hard to generalize for larger systems/nonlinear constraints.

June 18, 2008

�	 �

�	 �

� �

Spr 2008	 16.323 2–3
Lagrange Multipliers

•	 Need a more general strategy - using Lagrange multipliers.

•	 Since f(x, u) = 0, we can adjoin it to the cost with constants

λT = λ1 . . . λn

without changing the function value along the constraint to create
Lagrangian function

L(x, u, λ) = F (x, u) + λT f(x, u)

• Given values of x and u for which f(x, u) = 0, consider differential
changes to the Lagrangian from differential changes to x and u:

∂L ∂L
dL = dx + du

∂x ∂u

where ∂L = ∂L ∂L (row vector) ∂u ∂u1 ∂um
· · ·

Since u are the decision variables it is convenient to choose λ so that •
∂L ∂F �

+ λT ∂f =
∂x

≡ 0	 (2.1)
∂x ∂x

∂F
�
∂f
�−1

⇒	λT = −
∂x ∂x

(2.2)

•	 To proceed, must determine what changes are possible to the cost
keeping the equality constraint satisfied.

– Changes to x and u are such that f(x, u) = 0, then

∂f ∂f
df = dx + du ≡ 0	 (2.3)

∂x ∂u
∂f −1

∂f ⇒	dx = −
∂x ∂u

du (2.4)

June 18, 2008

Spr 2008	 16.323 2–4

Then the allowable cost variations are •
∂F ∂F

dF =
∂x

dx +
∂u

du �
∂F
�
∂f
�−1

∂f ∂F
�

(2.5)

= −
∂x ∂x ∂u

+
∂u

du � �

=
∂F
∂u

+ λT ∂f
∂u

du (2.6)

∂L ≡
∂u

du (2.7)

•	 So the gradient of the cost F with respect to u while keeping the
constraint f(x, u) = 0 is just

∂L
∂u

and we need this gradient to be zero to have a stationary point so
that dF = 0 ∀ du = 0� .

•	 Thus the necessary conditions for a stationary value of F are

∂L
=	 0 (2.8)

∂x
∂L

=	 0 (2.9)
∂u
∂L

=	 f(x, u) = 0 (2.10)
∂λ

which are 2n + m equations in 2n + m unknowns.

•	 Note that Eqs. 2.8–2.10 can be written compactly as

∂L
=	 0 (2.11)

∂y
∂L

=	 0 (2.12)
∂λ

– The solutions of which give the stationary points.

June 18, 2008

Spr 2008	 16.323 2–5
Intuition

•	 Can develop the intuition that the constrained solution will be a point
of tangency of the constant cost curves and the constraint function

– No further improvements possible while satisfying the constraints.

•	 Equivalent to saying that the gradient of the cost ftn (normal to
the constant cost curve) ∂F/∂y [black lines] must lie in the space
spanned by the constraint gradients ∂f/∂y [red lines]

– Means cost cannot be improved without violating the constraints.

– In 2D case, this corresponds to ∂F/∂y being collinear to ∂f/∂y

•	 Note: If this were not true, then it would be possible to take dy in
the negative of the direction of the component of the cost gradient
orthogonal to the constraint gradient, thereby reducing the cost and
still satisfying the constraint.

– Can see that at the points on the constraint above and blow the
optimal value of x2

June 18, 2008

� �

Spr 2008 16.323 2–6

Figure 2.9: Minimization with equality constraints: shows that function and cost
gradients are nearly collinear near optimal point and clearly not far away.

1 1

f(x1, x2) = x2 − ((x1)3 − (x1)2 + (x1) + 2) = 0 and F = 2

1 xT
1 2

x

Figure 2.10: Zoomed in plot.

June 18, 2008

� �

Spr 2008 16.323 2–7

1 1

f(x1, x2) = x2 − ((x1 − 2)3 − (x1 − 2)2 + (x1 − 2) + 2) = 0 and F = 1 xT x
2 1 2

Figure 2.11: Change constraint - note that the cost and constraint gradients are
collinear, but now aligned

June 18, 2008

Spr 2008	 16.323 2–8

•	 Generalize this intuition of being “collinear” to larger state dimensions
to notion that the cost gradient must lie in the space spanned
by the constraint gradients.

– Equivalent to saying that it is possible to express the cost gradient
as a linear combination of the constraint gradients

– Again, if this was not the case, then improvements can be made
to the cost without violating the constraints.

•	 So that at a constrained minimum, there must exist constants such
that the cost gradient satisfies:

∂F ∂f1 ∂f2 ∂fn

∂y
= −λ1

∂y
− λ2

∂y
− · · · − λn

∂y
(2.13)

−λT ∂f =	 (2.14)
∂y

or equivalently that
∂F

+ λT ∂f = 0
∂y ∂y

which is, of course, the same as Eq. 2.11.

June 18, 2008

� �

Spr 2008	 16.323 2–9
Constrained Example

•	 Minimize F (x1, x2) = x1
2 +x2

2 subject to f(x1, x2) = x1 +x2 +2 = 0

– Form the Lagrangian

L	� F (x1, x2) + λf (x1, x2) = x1
2 + x2

2 + λ(x1 + x2 + 2)

– Where λ is the Lagrange multiplier

•	 The solution approach without constraints is to find the stationary
point of F (x1, x2) (∂F/∂x1 = ∂F/∂x2 = 0)

– With constraints we find the stationary points of L

x1 ∂L ∂L
y = , = 0, = 0

x2 ∂y ∂λ

which gives

∂L
=	 2x1 + λ = 0

∂x1
∂L

=	 2x2 + λ = 0
∂x2
∂L

=	 x1 + x2 + 2 = 0
∂λ

•	 This gives 3 equations in 3 unknowns, solve to find x1
� = x2

� = −1

•	 The key point here is that due to the constraint, the selection of x1

and x2 during the minimization are not independent

– The Lagrange multiplier captures this dependency.

•	 Difficulty can be solving the resulting equations for the optimal points
(can be ugly nonlinear equations)

June 18, 2008

Spr 2008 16.323 2–10
Inequality Constraints

• Now consider the problem

min F (y) (2.15)
y

such that f(y) ≤ 0 (2.16)

– Assume that there are n constraints, but do not need to constrain
n with respect to the state dimension p since not all inequality
constraints will limit a degree of freedom of the solution.

• Have similar picture as before, but now not all constraints are active

– Black line at top is inactive since x1 + x2 − 1 < 0 at the optimal
value x = [1 − 0.60] it does not limit a degree of freedom in ⇒
the problem.

– Blue constraint is active, cost lower to the left, but f1 > 0 there

Figure 2.12: Cost and constraint gradients shown

June 18, 2008

Spr 2008 16.323 2–11

With x1 + x2 − 1 ≤ 0, both constraints are active

Figure 2.13: Other cases of active and inactive constraints

June 18, 2008

Spr 2008	 16.323 2–12

•	 Intuition in this case is that at the minimum, the cost gradient must
lie in the space spanned by the active constraints - so split as:

∂F � ∂fi � ∂fj
∂y

= − λi
∂y

− λj
∂y

(2.17)
i	 j
active inactive

– And if the constraint is inactive, then can set λj = 0

•	 With equality constraints, needed the cost and function gradients to
be collinear, but they could be in any orientation.

•	 For inequality constraints, need an additional constraint that is related
to the allowable changes in the state.

– Must restrict condition 2.17 so that the cost gradient points in
the direction of the “allowable side” of the constraint (f < 0).
⇒	Cost cannot be reduced without violating constraint.
⇒	Cost and function gradients must point in opposite directions.

– Given 2.17, require that λi ≥ 0 for active constraints

• Summary: Active constraints, λi ≥ 0, and Inactive ones λj = 0

June 18, 2008

Spr 2008	 16.323 2–13

Given this, we can define the same Lagrangian as before L = F +λT f ,•
and the necessary conditions for optimality are

∂L
∂y

= 0 (2.18)

∂L
λi
∂λi

= 0 ∀i (2.19)

where the second property applies to all constraints

– Active ones have λi ≥ 0 and satisfy ∂L
∂λi

= fi = 0

– Inactive ones have λi = 0 and satisfy ∂L
∂λi

= fi < 0.

•	 Equations 2.18 and 2.19 are the “essence” of the Kuhn-Tucker the

orem in nonlinear programming - more precise statements available
with more careful specification of the constraints properties.

– Must also be careful in specifying the second order conditions for
a stationary point to be a minimum - see Bryson and Ho, sections
1.3 and 1.7.

•	 Note that there is an implicit assumption here of regularity – that
the active constraint gradients are linearly independent – for the λ�s
to be well defined.

– Avoids redundancy

June 18, 2008

Spr 2008	 16.323 2–14
Cost Sensitivity

•	 Often find that the constraints in the problem are picked somewhat
arbitrarily - some flexibility in the limits.

– Thus it would be good to establish the extent to which those
choices impact the solution.

•	 Note that at the solution point,

∂L ∂F
=	−λT ∂f = 0

∂y
⇒

∂y ∂y

If the state changes by Δy, would expect change in the

∂F
Cost ΔF = Δy

∂y
∂f

Constraint Δf = Δy
∂y

So then we have that

ΔF = −λT ∂f
∂y

Δy = −λT Δf

dF ⇒
df

= −λT

– Sensitivity of the cost to changes in the constraint func
tion is given by the Lagrange Multipliers.

•	 For active constraints λ ≥ 0, so expect that dF/df ≤ 0

– Makes sense because if it is active, then allowing f to increase will
move the constraint boundary in the direction of reducing F

– Correctly predicts that inactive constraints will not have an impact.

June 18, 2008

Spr 2008	 16.323 2–15

Alternative Derivation of Cost Sensitivity

•	 Revise the constraints so that they are of the form f ≤ c, where
c ≥ 0 is a constant that is nominally 0.

– The constraints can be rewritten as f = f − c ≤ 0, which means

∂f ∂f
∂y

≡
∂y

and assuming the f constraint remains active as we change c

∂f ∂f
∂c
≡
∂c
− I = 0

•	 Note that at the solution point,

∂L ∂F
=	−λT ∂f = −λT ∂f = 0

∂y
⇒

∂y ∂y ∂y

To study cost sensitivity, must compute ∂F To proceed, note that •	 ∂c .

∂F ∂F ∂y
=

∂c ∂y ∂c

−λT ∂f ∂y
=

∂y ∂c

−λT ∂f =
∂c

=	 −λT

June 18, 2008

Spr 2008 16.323 2–16

Figure 2.14: Shows that changes to the constraint impact cost in a way that can be
predicted from the Lagrange Multiplier.

June 18, 2008

Spr 2008 16.323 2–17
Simple Constrained Example

• Consider case F = x1
2 + x1x2 + x2

2 and x2 ≥ 1, x1 + x2 ≤ 3

• Form Lagrangian

L = x1
2 + x1x2 + x2

2 + λ1(1 − x2) + λ2(x1 + x2 − 3)

• Form necessary conditions:

∂L
= 2x1 + x2 + λ2 = 0

∂x1
∂L

= x1 + 2x2 − λ1 + λ2 = 0
∂x2
∂L

λ1 = λ1(1 − x2) = 0
∂λ1
∂L

λ2 = λ2(x1 + x2 − 3) = 0
∂λ2

• Now consider the various options:

– Assume λ1 = λ2 = 0 both inactive

∂L

= 2x1 + x2 = 0
∂x1
∂L

= x1 + 2x2 = 0
∂x2

gives solution x1 = x2 = 0 as expected, but does not satisfy all
the constraints

– Assume λ1 = 0 (inactive), λ2 ≥ 0 (active)

∂L

= 2x1 + x2 + λ2 = 0

∂x1
∂L

= x1 + 2x2 + λ2 = 0
∂x2
∂L

λ2 = λ2(x1 + x2 − 3) = 0
∂λ2

which gives solution x1 = x2 = 3/2, which satisfies the con

straints, but F = 6.75 and λ2 = −9/2

June 18, 2008

Spr 2008 16.323 2–18

– Assume λ1 ≥ 0 (active), λ2 = 0 (inactive)

∂L

= 2x1 + x2 = 0

∂x1
∂L

= x1 + 2x2 − λ1 = 0
∂x2
∂L

λ1 = λ1(1 − x2) = 0
∂λ1

gives solution x1 = −1/2, x2 = 1, λ1 = 3/2 which satisfies the
constraints, and F = 0.75

Figure 2.15: Simple example

June 18, 2008

Spr 2008 16.323 2–19

Code to generate Figure 2.12

1 %

2 % 16.323 Spr 2008

3 % Plot of cost ftns and constraints

4

5 clear all;close all;

6 set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)

7 set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)

8

9 global g G f

10

11 F=[];g=[0;0];G=[1 1;1 2];
12

13 testcase=0
14 if testcase
15 f=inline(’(1*(x1+1).^3-1*(x1+1).^2+1*(x1+1)+2)’);
16 dfdx=inline(’(3*1*(x1+1).^2-2*1*(x1+1)+1)’);
17 else
18 f=inline(’(1*(x1-2).^3-1*(x1-2).^2+1*(x1-2)+2)’);
19 dfdx=inline(’(3*1*(x1-2).^2-2*1*(x1-2)+1)’);
20 end
21

22 x1=-3:.01:5;x2=-4:.01:4;
23 for ii=1:length(x1);
24 for jj=1:length(x2);
25 X=[x1(ii) x2(jj)]’;
26 F(ii,jj)=g’*X+X’*G*X/2;
27 end;
28 end;
29 figure(1);clf
30 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .29 .4 .5 1:1:max(max(F))]);
31 xlabel(’x_1’)
32 ylabel(’x_2’)
33 hold on;
34 plot(x1,f(x1),’LineWidth’,2);
35

36 % X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)
37 xx=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc’);
38 hold on
39 plot(xx(1),xx(2),’m*’,’MarkerSize’,12)
40 axis([-3 5 -4 4]);
41

42 Jx=[];
43 [kk,II1]=min(abs(x1-xx(1)))
44 [kk,II2]=min(abs(x1-1.1*xx(1)))
45 [kk,II3]=min(abs(x1-0.9*xx(1)))
46 ll=[II1 II2 II3];
47 gam=.8; % line scaling
48 for ii=1:length(ll)
49 X=[x1(ll(ii));f(x1(ll(ii)))]
50 Jx(ii,:)=(g+G*X)’;
51 X2=X+Jx(ii,:)’*gam/norm(Jx(ii,:));
52

53 Nx1=X(1);
54 df=[-dfdx(Nx1);1]; % x_2=f(x_1) ==> x_2 - f(x_1) < =0
55

56 X3=[Nx1;f(Nx1)];
57 X4=X3+df*gam/norm(df);
58

59 plot(X2(1),X2(2),’ko’,’MarkerSize’,12)
60 plot(X(1),X(2),’ks’,’MarkerSize’,12)
61 plot([X(1);X2(1)],[X(2);X2(2)],’k-’,’LineWidth’,2)
62 plot(X4(1),X4(2),’ro’,’MarkerSize’,12)
63 plot(X3(1),X3(2),’rs’,’MarkerSize’,12)
64 plot([X4(1);X3(1)],[X4(2);X3(2)],’r-’,’LineWidth’,2)
65 if ii==1;
66 text([1.25*X2(1)],[X2(2)],’\partial F/\partial y’)

June 18, 2008

Spr 2008 16.323 2–20

67 text([X4(1)-.75],[0*X4(2)],’\partial f/\partial y’)

68 end

69 end

70 hold off

71

72 %%%%%%%%%%%%%%%%%%%%%%%%

73

74 f2=inline(’-1*x1-1’);global f2

75 df2dx=inline(’-1*ones(size(x))’);

76

77 figure(3);gam=2;

78 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .3 .4 .5 1:1:max(max(F))]);

79 xlabel(’x_1’);ylabel(’x_2’)

80

81 xx=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc2’);

82 hold on

83 Jx=(g+G*xx)’;

84 X2=xx+Jx’*gam/norm(Jx);

85 plot(xx(1),xx(2),’m*’,’MarkerSize’,12)

86 plot(X2(1),X2(2),’mo’,’MarkerSize’,12);

87 plot([xx(1);X2(1)],[xx(2);X2(2)],’m-’,’LineWidth’,2)

88 text([X2(1)],[X2(2)],’\partial F/\partial y’)

89 hold off

90

91 hold on;

92 plot(x1,f(x1),’LineWidth’,2);

93 text(-1,1,’f_2 > 0’)

94 text(-2.5,0,’f_2 < 0’)

95 plot(x1,f2(x1),’k-’,’LineWidth’,2);

96 text(3,2,’f_1 < 0’)

97 if testcase

98 text(0,3,’f_1 > 0’)

99 else

100 text(1,3,’f_1 > 0’)
101 end
102

103 dd=[xx(1) 0 xx(1)]’;
104 X=[dd f(dd)];
105 df=[-dfdx(dd) 1*ones(size(dd))];
106 X2=X+gam*df/norm(df);
107 for ii=3
108 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’LineWidth’,2)
109 text([X2(ii,1)-1],[X2(ii,2)],’\partial f/\partial y’)
110 end
111 X=[dd f2(dd)];
112 df2=[-df2dx(dd) 1*ones(size(dd))];
113 X2=X+gam*df2/norm(df2);
114 %for ii=1:length(X)
115 for ii=1
116 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’k’,’LineWidth’,2)
117 text([X2(ii,1)],[X2(ii,2)],’\partial f/\partial y’)
118 end
119 hold off
120

121 %%%%%%%%%%%%%%%%%%%%%%
122

123 f2=inline(’-1*x1+1’);global f2
124 df2dx=inline(’-1*ones(size(x))’);
125

126 figure(4);clf;gam=2;
127 contour(x1,x2,F’,[min(min(F)) .05 .1 .2 .3 .4 .5 1:1:max(max(F))]);
128 xlabel(’x_1’);ylabel(’x_2’)
129

130 xx=fmincon(’meshf’,[1;-1],[],[],[],[],[],[],’meshc2’);
131 hold on
132 Jx=(g+G*xx)’;
133 X2=xx+Jx’*gam/norm(Jx);
134 plot(xx(1),xx(2),’m*’,’MarkerSize’,12)
135 plot(X2(1),X2(2),’mo’,’MarkerSize’,12);
136 plot([xx(1);X2(1)],[xx(2);X2(2)],’m-’,’LineWidth’,2)
137 text([X2(1)],[X2(2)],’\partial F/\partial y’)
138 hold off

June 18, 2008

1

2

3

4

5

6

7

8

9

Spr 2008 16.323 2–21

139

140 hold on;

141 plot(x1,f(x1),’LineWidth’,2);

142 text(-1,3,’f_2 > 0’)

143 text(-2.5,2,’f_2 < 0’)

144 plot(x1,f2(x1),’k-’,’LineWidth’,2);

145 text(3,2,’f_1 < 0’)

146 if testcase

147 text(0,3,’f_1 > 0’)

148 else

149 text(1,3,’f_1 > 0’)

150 end

151

152 dd=[xx(1) 0 xx(1)]’;

153 X=[dd f(dd)];

154 df=[-dfdx(dd) 1*ones(size(dd))];

155 X2=X+gam*df/norm(df);

156 for ii=3

157 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’LineWidth’,2)

158 text([X2(ii,1)-1],[X2(ii,2)],’\partial f/\partial y’)

159 end

160 X=[dd f2(dd)];

161 df2=[-df2dx(dd) 1*ones(size(dd))];

162 X2=X+gam*df2/norm(df2);

163 %for ii=1:length(X)

164 for ii=1

165 plot([X(ii,1);X2(ii,1)],[X(ii,2);X2(ii,2)],’k’,’LineWidth’,2)

166 text([X2(ii,1)],[X2(ii,2)],’\partial f/\partial y’)

167 end

168 hold off

169

170 %%%%%%%%%%%%%%%%%%%%%%%%%

171

172 if testcase

173 figure(1)

174 print -r300 -dpng mesh1b.png;%jpdf(’mesh1b’);

175 axis([-4 0 -1 3]);

176 print -r300 -dpng mesh1c.png;%jpdf(’mesh1c’);

177 figure(3)

178 print -r300 -dpng mesh2.png;%jpdf(’mesh2’);

179 figure(4)

180 print -r300 -dpng mesh2a.png;%jpdf(’mesh2a’);

181 else

182 figure(1)

183 print -r300 -dpng mesh1.png;%jpdf(’mesh1’);

184 axis([-.5 4 -2 2]);

185 print -r300 -dpng mesh1a.png;%jpdf(’mesh1a’);

186 figure(3)

187 print -r300 -dpng mesh4.png;%jpdf(’mesh4’);

188 figure(4)

189 print -r300 -dpng mesh4a.png;%jpdf(’mesh4a’);

190 end

191

192 %

193 % sensitivity study

194 % line given by x_2=f(x_1), and the constraint is that x_2-f(x_1) <= 0

195 % changes are made to the constraint so that x_2-f(x_1) <= alp > 0

196 figure(5);clf

197 contour(x1,x2,F’,[min(min(F)) .05 .1 .213 .29 .4 .6:.5:max(max(F))]);

198 xlabel(’x_1’)

199 ylabel(’x_2’)

200 hold on;

20 f=inline(’(1*(x1-2).^3-1*(x1-2).^2+1*(x1-2)+2)’);

20 dfdx=inline(’(3*1*(x1-2).^2-2*1*(x1-2)+1)’);

20 plot(x1,f(x1),’k-’,’LineWidth’,2);

20 alp=1;

20 plot(x1,f(x1)+alp,’k--’,’LineWidth’,2);

20

20 global alp

20 [xx1,temp,temp,temp,lam1]=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc3’);

20 alp=0;

210 [xx0,temp,temp,temp,lam0]=fmincon(’meshf’,[0;0],[],[],[],[],[],[],’meshc3’);

June 18, 2008

1

2

3

4

5

6

7

8

9

Spr 2008 16.323 2–22

211

212 [meshf(xx0) lam0.ineqnonlin;meshf(xx1) lam1.ineqnonlin]

213

214 legend(’F’,[’const=0, F^*=’,num2str(meshf(xx0))],[’const = 1, F^*=’ ,num2str(meshf(xx1))])

215

216 hold on

217 plot(xx0(1),xx0(2),’mo’,’MarkerSize’,12,’MarkerFaceColor’,’m’)

218 plot(xx1(1),xx1(2),’md’,’MarkerSize’,12,’MarkerFaceColor’,’m’)

219

220 text(xx0(1)+.5,xx0(2),[’\lambda_0 = ’,num2str(lam0.ineqnonlin)])

221

222 axis([0 2.5 -1 .5])

223 print -r300 -dpng mesh5;%jpdf(’mesh5’);

1 function F=meshf(X);
2

3 global g G
4

5 F=g’*X+X’*G*X/2;
6

7 end

1 function [c,ceq]=meshc(X);
2

3 global f
4

5 c=[];
6 %ceq=f(X(1))-X(2);
7 ceq=X(2)-f(X(1));
8

9 return

function [c,ceq]=meshc(X);

global f f2

%c=[f(X(1))-X(2);f2(X(1))-X(2)];
c=[X(2)-f(X(1));X(2)-f2(X(1))];

ceq=[];

return

June 18, 2008

Spr 2008 16.323 2–23

Code for Simple Constrained Example

1 figure(1),clf
2 xx=[-3:.1:3]’; for ii=1:length(xx);for jj=1:length(xx); %
3 FF(ii,jj)= xx(ii)^2+xx(ii)*xx(jj)+xx(jj)^2;end;end;%
4 hh=mesh(xx,xx,FF);%
5 hold on;%
6

7 plot3(xx,ones(size(xx)),xx.^2+1+xx,’m-’,’LineWidth’,2);%
8 plot3(xx,3-xx,xx.^2+(3-xx).^2+xx.*(3-xx),’g-’,’LineWidth’,2);%
9

10 xlabel(’x_1’); ylabel(’x_2’); %
11 hold off; axis([-3 3 -3 3 0 20])%
12 hh=get(gcf,’children’);%
13 set(hh,’View’,[-109 74],’CameraPosition’,[-26.5555 13.5307 151.881]);%
14

15 xx=fmincon(’simplecaseF’,[0;0],[],[],[],[],[],[],’simplecaseC’);
16 hold on
17 plot3(xx(1),xx(2),xx(1).^2+xx(2).^2+xx(1).*xx(2),’rs’,’MarkerSize’,20,’MarkerFace’,’r’)
18 xx(1).^2+xx(2).^2+xx(1).*xx(2)
19

20 print -r300 -dpng simplecase.png;
21

1 function F=simplecaseF(X);
2

3 F=X(1)^2+X(1)*X(2)+X(2)^2;
4

5 return

1 function [c,ceq]=simplecaseC(X);
2

3 c=[1-X(2);X(1)+X(2)-3];
4 ceq=0;
5

6 return

June 18, 2008

	16.323: Principles of Optimal Control
	Lecture 2: Constrained Optimization
	Constrained Optimization
	Fig: Simple function minimization with constraint.

	Lagrange Multipliers
	Intuition
	Fig: Minimization with equality constraints: shows that function and cost gradients are nearly collinear near optimal point and clearly not far away.
	Fig: Zoomed in plot.
	Fig: Change constraint - note that the cost and constraint gradients are collinear, but now aligned

	Constrained Example
	Inequality Constraints
	Fig: Cost and constraint gradients shown
	Fig: Other cases of active and inactive constraints

	Cost Sensitivity
	Alternative Derivation of Cost Sensitivity
	Fig: Shows that changes to the constraint impact cost in a way that can be predicted from the Lagrange Multiplier.

	Simple Constrained Example
	Fig: Simple example

	Code for Figure 4
	Code for Simple Constrained Example

	Lecture 9: Constrained Optimal Control
	Constrained Example

