Massachusetts Institute of Technology

16.410-13 Principles of Autonomy and Decision Making

Problem Set #7 Part 2

Problem 3: Search (20 points)

You are trying to find a path from vertex 0 to vertex 7 in the following directed graph using several search algorithms.

Assume the following:

- Edges are length 1.
- h denotes heuristic cost for each vertex.
- Given two or more equally good nodes, explore them in ascending numerical order.
- The search stops as soon as the goal is expanded.

Write the sequence of vertices **expanded** by the specified search methods. A vertex i is **expanded** when a search method takes path N with head(N) = i off the queue, and attempts to extend the path N to vertex i's children.

Part A. Greedy Search

Show the greedy search expansion sequence up until the first solution path has been found (we have started it for you). Write it as a sequence of pair (<cost>, <vertex>),

where <cost> is the cost the computed when extending a path to <vertex>. Note that no visited list is used.

 $(4, 0), (0, 2), \dots$

Write the final path found. Is this the optimal solution?

Part B. A* Search

Show the A* expansion sequence up until the first solution path has been found (we have started it for you). Write it as a sequence of pair (<cost>, <vertex>), where <cost> is the cost the computed when extending a path to <vertex>. Please show your work, including the queue and the expansion sequence for each iteration of the search. Write a path in the queue as a pair (<cost>, <path>), where <cost> is the cost estimate computed for a partial path <path>, and a path an expanded list is used.

Iteration	Q	Expansion Sequence
0	(4, [0])	
1	(1, [2,0]), (4, [1,0])	(4,0)
2		(4,0),

Write the final path found. Is this the optimal solution?

You must include in your submission:

- A. The expansion sequence, final path, and the optimality of the final path for *Greedy search*.
- *B. The expansion sequence and queue for each search iteration, final path, and the optimality of the final path for A* search.*
- C. The amount of time you spent on this problem.

Problem 4: A* Implementation (40 points)

Implement a Best-first, Greedy, and A* search by implementing the following classes:

- A. BestFirstSearch
- B. GreedyCostFunction
- C. AdmissibleHeuristicCostFunction

Your must use the provided source codes in which some implementations are incomplete. You must not change the specification. Look for "//*** You fill in here! ***//" and implement the section as necessary. Read the comments in the source code carefully. The comments will provide additional helpful information.

Part A. BestFirstSearch

Complete the following methods:

```
/**
 * incrementSearch expects that the search already has been initialized
 * @param countdown the number of queue elements to pop before
 * halting
 * @return a sequence of actions (a plan) that achieves the goal
 * or an empty list if one does not exist
 * or null if time expires.
 **/
public LinkedList<Action> incrementSearch(int countdown)
```

Part B. GreedyCostFunction

Complete the following method:

```
/**
 * Returns the cost of a new Node N,
 * The cost is computed as follows:
 * f(N) = h(N)).
 *
 * @param node Search node we wish to add
 * @return Cost with which this node should be prioritized
 */
public double getCost(Node node) throws NotApplicableException{}
```

Part C. AdmissibleHeuristicCostFunction

Complete the following method:

You must include in your submission:

- A. [src] Completed implementation of BestFirstSearch.
- B. [src] Completed implementation of GreedyCostFunction
- C. [src] Completed implementation of AdmissibleHeuristicCostFunction
- D. [pdf] The amount of time you spent on this problem.

Part D. Demonstration

Now you will assess your algorithms by experimenting with BattleCode.

Run your three algorithms with your heuristic function and the map (ps3map.xml) provided. Record:

- 1. the number of extended paths,
- 2. the maximum queue size reached during search, and
- 3. the cost of the path returned.

You must include in your submission:

- A. [pdf] Tabular form of the results.
- B. [pdf] Discussion of the results.
- C. [pdf] The amount of time you spent on this problem.

MIT OpenCourseWare http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making $\ensuremath{\mathsf{Fall}}\xspace_{2010}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.