
��1

Propositional Logic and

Satisfiability

Brian C. Williams
16.410-13

October 13th, 2010

Slides draw upon
material from:

Prof. Bart Selman
Cornell University

Assignments

•� Assignment:

•� Problem Set #5: Activity Planning,

due today Wednesday, October 13th, 2010.

•� Problem Set #6: Propositional Logic and Satisfiability,

out today; due October 27th, 2010 (in 2 weeks).

•� Reading:

•� Today: [AIMA] Ch. 7, 8

•� Monday: TBD

•� Exam:

•� Mid-Term - October 20th.

Brian Williams, Fall 10 2

��2

Hidden Failures Require Reasoning

from a Model:

STS-93

Brian Williams, Fall 10
3

��Symptoms:�

•� Engine temp sensor high�

•� LOX level low�

•� GN&C detects low thrust�

•� H2 level possibly low�

��Problem: Liquid hydrogen leak�

��Effect: �

•� LH2 used to cool engine�

•� Engine runs hot�

•� Consumes more LOX�

How Do We Reason About Complex

Systems using Commonsense Models?

Brian Williams, Fall 10
4

Helium tank�

Fuel tank�Oxidizer tank�

Main�
Engines�

Flow1 = zero�

Pressure2= nominal�

Acceleration = zero�

Model-based Reasoning:

•� Reason from a single
 model to operate,

 diagnose, repair�

•�Model using Logic.

•�Reason using Sat.

Task: Monitor engine operation

•� You open the valves, and
 observe . . .

•� Is the engine ok?

•� Could the valve in red be

 stuck closed?

Pressure1 = nominal�

Image credit: NASA.

��3

Modeling an Engine in

Propositional Logic

An Engine E1 can either be okay, or broken in some unknown way.

When E1 is okay, it will thrust when there is a flow through V1 and v2.

Brian Williams, Fall 10
5

E1

V1 V2

(mode(E1) = ok or mode(E1) = unknown) and

not (mode(E1) = ok and mode(E1) = unknown) and

(mode(E1) = ok implies

 (thrust(E1) = on if and only if flow(V1) = on and flow(V2) = on))

Monitoring:
Are the observations O consistent with model M?

Fault Diagnosis:
What fault modes of M are consistent with O?

Reconfiguration:
What component modes of M produce behavior G?

�� Propositional Satisfiability:

Find a truth assignment that satisfies some
logical sentence S:

1.� Reduce S to clausal form.

2.� Perform search similar to MAC = (BT+CP)
[Davis, Logmann & Loveland, 1962]

Brian Williams, Fall 10
6

Reasoning From the Model

��4

 Find a truth assignment that satisfies logical sentence T:
•� Reduce sentence T to clausal form.

•� Perform search similar to MAC = (BT+CP)
[Davis, Logmann & Loveland, 1962]

Propositional satisfiability testing:

 1990: 100 variables / 200 clauses (constraints)

 1998: 10,000 - 100,000 vars / 10^6 clauses

2010: millions

 Novel applications:

 e.g. diagnosis, planning, software verification, circuit

testing, machine learning, and protein folding

Brian Williams, Fall 10
7

Propositional Satisfiability

What Formal Languages Exist for

Describing Constraints?

•� Algebra values of variables

•� Probability degree of belief

•� Propositional logic truth of facts

•� Temporal logic time, �.

•� Modal logics knowledge, belief �

•� First order logic facts,objects,relations

Brian Williams, Fall 10
8

��5

Outline

•� Propositional Logic

•� Syntax

•� Semantics

•� Reduction to Clauses

•� Propositional Satisfiability

•� Empirical, Average Case Analysis

•� Appendices

Brian Williams, Fall 10
9

Logic in General

•� Logic

•� A formal language for representing information

that can be used to draw conclusions.

•� About the truth of statements and their consequences.

•� Syntax

•� Defines the expressible sentences in the language.

•� Semantics

•� Defines the meaning of these sentences

�� truth of a sentence in some world.

Brian Williams, Fall 10
10

��6

Logic Example: Arithmetic

•� Syntax – legal sentences

•� X + 2 > Y is a legal sentence.

•� X 2 + Y > is not a legal sentence.

•� Semantics - truth in world

•� X + 2 > Y is true iff the number X + 2 is not

 less than or equal to the number Y

•� X + 2 > Y is true in a world where X = 7, Y = 1

•� X + 2 > Y is false in a world where X = 0, Y = 6

Brian Williams, Fall 10
11

Propositional Logic: Syntax
Propositions

•� A statement that is true or false

–� (valve v1)

•� Assignments to finite domain variables - State Logic

–� (= voltage high)

Propositional Sentences (S)

•� S ::= proposition |

•� (NOT S) |

•� (OR S1 ... Sn) |

•� (AND S1 ... Sn)

Defined Constructs

•� (implies S1 S2) => ((not S1) OR S2)

•� (IFF S1 S2) => (AND (IMPLIES S1 S2)(IMPLIES S2 S1))

12

��7

Propositional Sentences:

Engine Example

(mode(E1) = ok or mode(E1) = unknown) and

not (mode(E1) = ok and mode(E1) = unknown) and

(mode(E1) = ok implies

 (thrust(E1) = on if and only if

 flow(V1) = on and flow(V2) = on))

Brian Williams, Fall 10
13

E1

V1 V2

Outline

•� Propositional Logic

•� Syntax

•� Semantics

•� Reduction to Clauses

•� Propositional Satisfiability

•� Empirical, Average Case Analysis

•� Appendices

Brian Williams, Fall 10
14

��8

Propositional Logic:

Semantics�

Interpretation I of sentence S

assigns true or false to every

proposition P in S.

•� S = (A or B) and C

•� I = {A=True, B=False, C=True}

•� I = {A=False, B=True, C=False}

A B C

True True True

True True False

True False True

True False False

False True True

False True False

False False True

False False False

Brian Williams, Fall 10
15

All Interpretations

Propositional Logic:

Semantics�

The truth of sentence S wrt interpretation I is defined by a

composition of Boolean operators applied to I:

•� Not S is True iff S is False

Not S S

False True

True False

Brian Williams, Fall 10
16

��9

Propositional Logic:

Semantics�

The truth of sentence Si wrt Interpretation I:

•� Not S is True iff S is False

•� S1 and S2 is True iff S1 is True and S2 is True

•� S1 or S2 is True iff S1 is True or S2 is True

S1 and S2 S1 S2

True True True

False True False

False False True

False False False

S1 or S2 S1 S2

True True True

True True False

True False True

False False False

Brian Williams, Fall 10
17

Propositional Logic:

Semantics�

The truth of sentence Si wrt Interpretation I:

•� Not S is True iff S is False

•� S1 and S2 is True iff S1 is True and S2 is True

•� S1 or S2 is True iff S1 is True or S2 is True

•� S1 implies S2 is True iff S1 is False or S2 is True

•� S1 iff S2 is True iff S1implies S2 is True

and S2 implies S1 is True

Brian Williams, Fall 10
18

��10

Example: Determining the Truth of

a Sentence

(mode(E1) = ok implies

 [(thrust(E1) = on if and only if (flow(V1) = on and flow(V2) = on)) and

 (mode(E1) = ok or mode(E1) = unknown) and

 not (mode(E1) = ok and mode(E1) = unknown)])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
19

Example: Determining the Truth of

a Sentence

(True implies

 [(False if and only if (True and False)) and

 (True or False) and

 not (True and False)])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
20

��11

Example: Determining the Truth of

a Sentence

(True implies

 [(False if and only if (True and False)) and

 (True or False) and

 not (True and False)])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
21

Example: Determining the Truth of

a Sentence

(True implies

 [(False if and only if (True and False)) and

 (True or False) and

 not False])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
22

��12

Example: Determining the Truth of

a Sentence

(True implies

 [(False if and only if (True and False)) and

 (True or False) and

True])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
23

Example: Determining the Truth of

a Sentence

(True implies

 [(False if and only if False) and

True and

True])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
24

��13

Example: Determining the Truth of

a Sentence

(True implies

 [(False if and only if False) and

True and

True])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
25

Example: Determining the Truth of

a Sentence

(True implies

 [(False implies False) and (False implies False)) and

True and

True])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
26

��14

Example: Determining the Truth of

a Sentence

(True implies

 [(not False or False) and (not False or False)) and

True and

True])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
27

Example: Determining the Truth of

a Sentence

(True implies

 [(True or False) and (True or False)) and

True and

True])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
28

��15

Example: Determining the Truth of

a Sentence

(True implies

 [(True and True) and

True and

True])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
29

Example: Determining the Truth of

a Sentence

(True implies

 [True and

True and

True])

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
30

��16

Example: Determining the Truth of

a Sentence

(True implies

True)

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
31

Example: Determining the Truth of

a Sentence

(not True or

True)

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
32

��17

Example: Determining the Truth of

a Sentence

(False or

True)

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
33

Example: Determining the Truth of

a Sentence

True!

Interpretation:

mode(E1) = ok is True

thrust(E1) = on is False

flow(V1) = on is True

 flow(V2) = on is False

mode(E1) = unknown is False

Brian Williams, Fall 10
34

If a sentence S evaluates to True

in interpretation I, then:

•� I satisfies S

•� I is a Model of S

��18

Satisfiable

A sentence is satisfiable if there is an interpretation
(a truth assignment) that makes the clause true.

•� (not A or B) is satisfiable.

•� (A implies not B) and (A implies B) is unsatisfiable.

Valid

A sentence is valid if it is true for all interpretations.

•� Is (not A or A or B) valid?

Yes, it is valid over all possible interpretations.

•� Is (A or B) valid with respect to the interpretations
{A=true, B=false} and {A=false, B=false}?

Brian Williams, Fall 10
35

Satisfiability versus Validity

Outline

•� Propositional Logic

•� Syntax

•� Semantics

•� Reduction to Clauses

•� Propositional Satisfiability

•� Appendices

Brian Williams, Fall 10
36

��19

Propositional Clauses:

A Simpler Form

•� Literal: A proposition or its negation.

•� B, Not A

•� Clause: A disjunction (or) of literals.

•� (not A or B or E)

•� Conjunctive Normal Form:

A conjunction (and) of clauses.

•� � = (A or B or C) and

 (not A or B or E) and

 (not B or C or D)

•� Represented by a set of clauses.

Brian Williams, Fall 10
37

Reduction to Clausal Form:

Engine Example

(mode(E1) = ok implies

 (thrust(E1) = on iff (flow(V1) = on and flow(V2) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and

not (mode(E1) = ok and mode(E1) = unknown)

Brian Williams, Fall 10
38

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on;

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on;

not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on)

 or thrust(E1) = on;

mode(E1) = ok or mode(E1) = unknown;

not (mode(E1) = ok) or not (mode(E1) = unknown);

��20

Reducing Propositional Formula

to Clauses (CNF)

See Appendix for Detailed Example:

1) Eliminate iff and implies

•� E1 iff E2 => (E1 implies E2) and (E2 implies E1)

•� E1 implies E2 => not E1 or E2

2) Move negations in, towards propositions, using

De Morgan s Theorem:

•� not (E1 and E2) => (not E1) or (not E2)

•� not (E1 or E2) => (not E1) and (not E2)

•� not (not E1) => E1

3) Move conjunctions out using Distributivity

•� E1 or (E2 and E3) =>(E1 or E2) and (E1 or E3)
Brian Williams, Fall 10

39

Outline

•� Propositional Logic

•� Syntax

•� Semantics

•� Reduction to Clauses

•� Propositional Satisfiability

•� Empirical, Average Case Analysis

•� Appendices

Brian Williams, Fall 10
40

��21

Propositional Satisfiability

Input: A Propositional Satisfiability Problem is
a pair <P, � >, where:

•� P is a finite set of propositions.

•� � is a propositional sentence over P
•� We assume it is reduced to a set of clauses.

Output: True iff there exists a model of �.

Brian Williams, Fall 10
41

Is an instance of a CSP:

•� Variables: Propositions

•� Domain: {True, False}

•� Constraints: Clauses

Models of <P, � >

•� An interpretation is a truth assignment to all propositions P.

•� A model is an interpretation such that all clauses are
satisfied:

•� A clause is satisfied iff at least one literal is true.

•� A clause is violated iff all literals are false.

Example: C1: Not A or B

C2: Not C or A

C3: Not B or C

Brian Williams, Fall 10
42

��22

1.� Apply systematic, complete procedure
•� BT + unit propagation, shortest clause heuristic

–� [Davis, Logmann, & Loveland 1962; Crawford & Auton 1997;
Nayak & Williams, 1997]

2.� Apply stochastic, incomplete procedure
•� [Minton et al. 90; Selman et. al 1993] – see Appendix

3.� Apply exhaustive clausal resolution
•� [Davis, Putnam 1960; Dechter Rish 1994]

Brian Williams, Fall 10
43

Testing Satisfiability of <P, � >

1.� Apply systematic, complete procedure

•� BT + unit propagation, shortest clause heuristic

 [Davis, Logmann, & Loveland 1962]

•� State-of-the-art implementations:

–� ntab [Crawford & Auton, 1997]

–� itms [Nayak & Williams, 1997]

–� many others! See SATLIB 1998 / Hoos & Stutzle

2.� Apply stochastic, incomplete procedure (Appendix)

•� MinConflict [Minton et a. 90]

•� GSAT/WalkWat [Selman et. al 1993)]– see Appendix

3.� Apply exhaustive clause resolution (Not Covered)
•� [Davis, Putnam, 1960]

Brian Williams, Fall 10
44

Testing Satisfiability of <P, � >

��23

Outline

•� Propositional Logic

•� Propositional Satisfiability

•� Backtrack Search

•� Unit Propagation

•� DPLL: Unit Propagation + Backtrack Search

•� Empirical, Average Case Analysis

•� Appendices

Brian Williams, Fall 10
45

Propositional Satisfiability using

Backtrack Search

•� Assign true or false to an
unassigned proposition.

•� Backtrack as soon as a

clause is violated.

Example:

•� C1: Not A or B

•� C2: Not C or A

•� C3: Not B or C

Brian Williams, Fall 10
46

A�

F�

F�
B�

C�

F�

satisfied

satisfied

satisfied

��24

Propositional Satisfiability using

Backtrack Search

•� Assign true or false to an
unassigned proposition.

•� Backtrack as soon as a

clause is violated.

Example:

•� C1: Not A or B

•� C2: Not C or A

•� C3: Not B or C

Brian Williams, Fall 10
47

A�

F�

F�
B�

C�

F� T�

satisfied

violated

satisfied

Propositional Satisfiability using

Backtrack Search

•� Assign true or false to an
unassigned proposition.

•� Backtrack as soon as a

clause is violated.

Example:

•� C1: Not A or B

•� C2: Not C or A

•� C3: Not B or C

Brian Williams, Fall 10
48

A�

F�

F�
B�

C�

F� T�

T�

C�

F�

satisfied

satisfied

violated

��25

Propositional Satisfiability using

Backtrack Search

•� Assign true or false to an
unassigned proposition.

•� Backtrack as soon as a

clause is violated.

Example:

•� C1: Not A or B

•� C2: Not C or A

•� C3: Not B or C

Brian Williams, Fall 10
49

A�

F�

F�
B�

C�

F� T�

T�

C�

T�F�

satisfied

satisfied

violated

Propositional Satisfiability using

Backtrack Search

•� Assign true or false to an
unassigned proposition.

•� Backtrack as soon as a

clause is violated.

Example:

•� C1: Not A or B

•� C2: Not C or A

•� C3: Not B or C

Brian Williams, Fall 10
50

A�

F�

F�
B�

C�

F� T�

T�

C�

T�F�

B�

T�

C�

F�

satisfied

satisfied

violated

��26

Propositional Satisfiability using

Backtrack Search

•� Assign true or false to an
unassigned proposition.

•� Backtrack as soon as a

clause is violated.

Example:

•� C1: Not A or B

•� C2: Not C or A

•� C3: Not B or C

Brian Williams, Fall 10
51

A�

F�

F�
B�

C�

F� T�

T�

C�

T�F�

B�

T�

C�

F� T�

C�

F�

satisfied

satisfied

violated

Propositional Satisfiability using

Backtrack Search

•� Assign true or false to an
unassigned proposition.

•� Backtrack as soon as a

clause is violated.

Example:

•� C1: Not A or B

•� C2: Not C or A

•� C3: Not B or C

Brian Williams, Fall 10
52

A�

F�

F�
B�

C�

F� T�

T�

C�

T�F�

B�

T�

C�

F� T�

C�

T�F�satisfied

satisfied

satisfied

��27

Clausal Backtrack Search:

Recursive Formulation

Procedure: BT(�, A)

Input: A cnf theory �,
 An assignment A to some propositions in �.

Output: true if � is satisfiable; false otherwise.

If a clause in � is violated, Return false;

Else If all propositions in � are assigned by A, Return true;

Else Q = some proposition in � unassigned by A;
Return (BT(�, A[Q = True]) or

 BT(�, A[Q = False]))

Brian Williams, Fall 10
53

Outline

•� Propositional Logic

•� Propositional Satisfiability

•� Backtrack Search

•� Unit Propagation

•� DPLL: Unit Propagation + Backtrack Search

•� Empirical, Average Case Analysis

•� Appendices

Brian Williams, Fall 10
54

��28

Unit Clause Resolution

Idea: Apply arc consistency (AC-3) to binary clauses

Unit clause resolution (aka unit propagation rule):

If all literals are false save L, then assign true to L:

•� (not A) (not B) (A or B or C)

 C

•� Unit propagation = repeated application of rule.

Brian Williams, Fall 10 55

A B

Clause: (not A or B)

T

F

T

F

Unit Propagation Examples

•�C1: Not A or B

•�C2: Not C or A

•�C3: Not B or C

•�C4: A

Brian Williams, Fall 10 56

C4�
A�

True�
C1�

B�

True�
C3�

C�

True�

Satisfied

Satisfied

Satisfied

Satisfied

Support

��29

Unit Propagation Examples

•�C1: Not A or B

•�C2: Not C or A

•�C3: Not B or C

•�C4: A

•�C4 : Not B

Brian Williams, Fall 10 57

C1� C3�C4�

C1� C2�
C4 �

A�

True�

B�

True�

C�

True�

A�

False�

B�

False�

C�

False�

C4�
A�

True�

Satisfied

Satisfied

Satisfied

Satisfied

Unit Propagation

Brian Williams, Fall 10
58

C1 : ¬r � q � p
C2: ¬ p � ¬ t

r

true

q

false

p

t

Procedure: propagate(C) // C is a clause�

if all literals in C are false except L, and L is unassigned

then assign true to L and

record C as a support for L and

for each clause C mentioning not L ,

 propagate(C)

end propagate

��30

Unit Propagation

Brian Williams, Fall 10
59

C1 : ¬r � q � p
C2: ¬ p � ¬ t

r

true

q

false

p

t

Procedure: propagate(C) // C is a clause�

if all literals in C are false except L, and L is unassigned

then assign true to L and

record C as a support for L and

for each clause C mentioning not L ,

 propagate(C)

end propagate

Unit Propagation

Brian Williams, Fall 10
60

C1 : ¬r � q � p

r q

p

C2: ¬ p � ¬ t

true false

true

t

Procedure: propagate(C) // C is a clause�

if all literals in C are false except L, and L is unassigned

then assign true to L and

record C as a support for L and

for each clause C mentioning not L ,

 propagate(C)

end propagate

��31

Unit Propagation

Procedure: propagate(C) // C is a clause�

if all literals in C are false except L, and L is unassigned

then assign true to L and

record C as a support for L and

for each clause C mentioning not L ,

 propagate(C)

end propagate
Brian Williams, Fall 10

61

C1 : ¬r � q � p

r q

p

C2: ¬ p � ¬ t

true false

true

t

Unit Propagation

Brian Williams, Fall 10
62

r q

p

true false

true C2: ¬ p � ¬ t

t

C1 : ¬r � q � p

Procedure: propagate(C) // C is a clause�

if all literals in C are false except L, and L is unassigned

then assign true to L and

record C as a support for L and

for each clause C mentioning not L ,

 propagate(C)

end propagate

��32

Unit Propagation

Brian Williams, Fall 10
63

r q

p

C2: ¬ p � ¬ t

true false

true

t
false

C1 : ¬r � q � p

Procedure: propagate(C) // C is a clause�

if all literals in C are false except L, and L is unassigned

then assign true to L and

record C as a support for L and

for each clause C mentioning not L ,

 propagate(C)

end propagate

Outline

•� Propositional Logic

•� Propositional Satisfiability

•� Backtrack Search

•� Unit Propagation

•� DPLL: Unit Propagation + Backtrack Search

•� Empirical, Average Case Analysis

•� Appendices

Brian Williams, Fall 10
64

��33

Propositional Satisfiability using DPLL
[Davis, Logmann, Loveland, 1962]

Initially:

•� Unit propagate.

Repeat:

1.� Assign true or false to an
unassigned proposition.

2.� Unit propagate.

3.� Backtrack as soon as a
clause is violated.

4.� Satisfiable if assignment
is complete.

Brian Williams, Fall 10
65

Propagate:�
C = F�
B = F�

A�

F�

Example:

•� C1: Not A or B

•� C2: Not C or A

•� C3: Not B or C

satisfied

satisfied

satisfied

Initially:

•� Unit propagate.

Repeat:

1.� Assign true or false to an
unassigned proposition.

2.� Unit propagate.

3.� Backtrack as soon as a
clause is violated.

4.� Satisfiable if assignment
is complete.

Brian Williams, Fall 10
66

Propagate:�
C = F�
B = F�

A�

F� T�
Propagate:�
B = T�
C = T�

Example:

•� C1: Not A or B

•� C2: Not C or A

•� C3: Not B or C

satisfied

satisfied

satisfied

Propositional Satisfiability using DPLL
[Davis, Logmann, Loveland, 1962]

��34

How Do We Fold Unit Propagation

into Backtracking?

Procedure: BT(�, A)

Input: A cnf theory �,
 An assignment A to some propositions in �

Output: A decision of whether � is satisfiable.

If a clause in � is violated, Return false;

Else If all propositions of � are assigned in A, Return true;
Else Q = some unassigned proposition in �;

Return (BT(�, A[Q = True]) or

 BT(�, A[Q = False]))

Brian Williams, Fall 10 67

Hint: Like MAC and Forward Checking:

�� limited inference

�� apply inference after assigning each variable.

D(P)LL Procedure
[Davis, Logmann, Loveland, 1961]

Procedure: DPLL(�, A)

Input: A cnf theory �,
 An assignment A to propositions in �

Output: A decision of whether � is satisfiable.

A = propagate(�);

If a clause in � is violated, given A Return false;

Else If all propositions of � are assigned in A , Return true;
Else Q = some unassigned proposition in �;

Return (DPLL(�, A [Q = True]) or

 DPLL(�, A [Q = False]))

Brian Williams, Fall 10
68

��35

Outline

•� Propositional Logic

•� Propositional Satisfiability

•� Backtrack Search

•� Unit Propagation

•� DPLL: Unit Propagation + Backtrack Search

•� Empirical, Average Case Analysis

•� Appendices

Brian Williams, Fall 10
69

Brian Williams, Fall 10
70

��������	
�	���

�
� � � �

����
	
�	
��������
����������

� � �

����

����

�
�
	

�
��
�

����

����

��	���	
��	���	
��	���

Courtesy of Bart Selman. Used with permission.

��36

Brian Williams, Fall 10
71

��������	
��

���
� � � �

�� ��������	�
��������� ��� �	��

� � �

���

���

�
��
�
�
�
�	
��
	

�
�
��
�
		
�

���

���� � ��
���� � ��
���� � �

��� ��� �

� ��� ��		�	 �	� � ��� ������ ���
������

���

���

�

����

����

����

����

Courtesy of Bart Selman. Used with permission.

Brian Williams, Fall 10 72

7 8 9 10654321
Ratio of constraints to variables (Alpha)

Less

More

Computational effort

Solvable Impossible

Image by MIT OpenCourseWare.

��37

Intuition

•�At low ratios:
•� few clauses (constraints)

•� many assignments

•� easily found

•�At high ratios:
•� many clauses
•� inconsistencies easily detected

Brian Williams, Fall 10
73

Phase Transitions for

Different Numbers of Variables

Brian Williams, Fall 10
74

FF
rraa
cc
tt
iioo
nn
oo
ff
FF
oo
rrmm

uu
llaa
ee
UU
nn
ss
aa
tt
iiss
fifi
ee
dd

22

UU NN SS AA TT

PP hh aa ss ee

SS AA TT

PP hh aa ss ee

22 00

11 00 00

22 44

44 00

55 00

11

00

33

00 .. 22

11 .. 00

00 .. 44

00 .. 66

00 .. 88

MM // NN

44 55 66 77

Courtesy of Bart Selman. Used with permission.

��38

Brian Williams, Fall 10
75

Phase Transitions: 2, 3 4, 5 and 6-SAT

Required Appendices

You are responsible for reading and
knowing this material:

1.� Local Search using
Min_Conflict and GSAT

2.� Reduction to Clausal Form

Courtesy of Bart Selman. Used with permission.

��39

Incremental Repair

(Min-Conflict Heuristic)

Brian Williams, Fall 10
77

1. Initialize a candidate solution using greedy
heuristic – get solution near correct one.

2.� Repeat until consistent:

1.� Select a variable in a conflict (violated constraint)

2.� assign it a value that minimizes the number of conflicts

(break ties randomly).

R,G,B

 G R, G

Graph Coloring

Initial Domains

Different-color constraint

V1

V2 V3

Spike Hubble Telescope Scheduler [Minton et al.]

GSAT

•�C1: Not A or B

•�C2: Not C or Not A

•�C3: or B or Not C

Brian Williams, Fall 10
78

C1, C2, C3 violated� A�

True�

B�

False�

C�

True�

C3 violated�

False�

C2 violated�

True�

C1 violated�

False�

1.� Init: Pick random assignment

2.� Check effect of flipping each

assignment, by counting
violated clauses.

3.� Pick assignment with fewest

violations,

4.� End if consistent, Else goto 2

��40

GSAT

•�C1: Not A or B

•�C2: Not C or Not A

•�C3: or B or Not C

Brian Williams, Fall 10
79

C1 violated� A�

True�

B�

False�

C�

False�

Satisfied�

False�

Satisfied�

True�

C1,C2,C3 violated�

True�

1.� Init: Pick random assignment

2.� Check effect of flipping each

assignment, counting violated
clauses.

3.� Pick assignment with fewest

violations,

4.� End if consistent, Else goto 2

GSAT

•�C1: Not A or B

•�C2: Not C or Not A

•�C3: or B or Not C

Brian Williams, Fall 10
80

Satisfied� A�

True�

B�

True�

C�

False�

1.� Init: Pick random assignment

2.� Check effect of flipping each

assignment, counting violated
clauses.

3.� Pick assignment with fewest

violations,

4.� End if consistent, Else goto 2

Problem: Pure hill climbers get stuck in local minima.

Solution: Add random moves to get out of minima (WalkSAT)

��41

Required Appendices

You are responsible for reading and
knowing this material:

1.� Local Search using
Min_Conflict and GSAT

2.� Reduction to Clausal Form

Reduction to Clausal Form:

Engine Example

(mode(E1) = ok implies

 (thrust(E1) = on iff flow(V1) = on and flow(V2) = on)) and

(mode(E1) = ok or mode(E1) = unknown) and

not (mode(E1) = ok and mode(E1) = unknown)

Brian Williams, Fall 10
82

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on;

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on;

not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on) or

 thrust(E1) = on;

mode(E1) = ok or mode(E1) = unknown;

not (mode(E1) = ok) or not (mode(E1) = unknown);

��42

Reducing Propositional Formula

to Clauses (CNF)

1) Eliminate IFF and Implies:

•� E1 iff E2 => (E1 implies E2) and (E2 implies E1)

•� E1 implies E2 => not E1 or E2

Brian Williams, Fall 10
83

Eliminate IFF:

Engine Example

(mode(E1) = ok implies

(thrust(E1) = on iff (flow(V1) = on and flow(V2) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and

not (mode(E1) = ok and mode(E1) = unknown)

(mode(E1) = ok implies

((thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and

 ((flow(V1) = on and flow(V2) = on) implies thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and

not (mode(E1) = ok and mode(E1) = unknown)

Brian Williams, Fall 10
84

��43

Eliminate Implies:

Engine Example

(mode(E1) = ok implies

 ((thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and

((flow(V1) = on and flow(V2) = on) implies thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and

not (mode(E1) = ok and mode(E1) = unknown)

(not (mode(E1) = ok) or

 ((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and

 (not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and

not (mode(E1) = ok and mode(E1) = unknown)

Brian Williams, Fall 10
85

Reducing Propositional Formula

to Clauses (CNF)

2) Move negations in towards propositions using

De Morgan s Theorem:

•� not (E1 and E2) => (not E1) or (not E2)

•� not (E1 or E2) => (not E1) and (not E2)

•� not (not E1) => E1

Brian Williams, Fall 10
86

��44

Move Negations In:

Engine Example

(not (mode(E1) = ok) or

 ((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and

 (not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and

not (mode(E1) = ok and mode(E1) = unknown)

(not (mode(E1) = ok) or

 ((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and

(not (flow(V1) = on) or not (flow(V2) = on)) or thrust(E1) = on)) and

(mode(E1) = ok or mode(E1) = unknown) and

(not (mode(E1) = ok) or not (mode(E1) = unknown)))

Brian Williams, Fall 10
87

Reducing Propositional Formula

to Clauses (CNF)

3) Move conjunctions out using distributivity:

•� E1 or (E2 and E3) => (E1 or E2) and (E1 or E3)

Brian Williams, Fall 10
88

��45

Move Conjunctions Out:

Engine Example

(not (mode(E1) = ok) or

((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and

 (not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and

(not (mode(E1) = ok) or not (mode(E1) = unknown))

(not (mode(E1) = ok) or

 (((not (thrust(E1) = on) or flow(V1) = on) and

 (not (thrust(E1) = on) or flow(V2) = on)) and

 (not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and

(not (mode(E1) = ok) or not (mode(E1) = unknown))

Brian Williams, Fall 10
89

Move Conjunctions Out:

Engine Example

(not (mode(E1) = ok) or

 (((not (thrust(E1) = on) or flow(V1) = on) and

 (not (thrust(E1) = on) or flow(V2) = on)) and

 (not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and

(not (mode(E1) = ok) or not (mode(E1) = unknown))

(not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on) and

(not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on)) and

(not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on)

 or thrust(E1) = on) and

(mode(E1) = ok or mode(E1) = unknown) and

(not (mode(E1) = ok) or not (mode(E1) = unknown))

Brian Williams, Fall 10
90

��46

Reducing Propositional Formula

to Clauses (CNF)

4) Simplify by Equivalence
remove double negations

–� (not not E1) => E1

apply commutativity and associativity

–� (E1 or (E3 or (not E1))) => (E1 or (not E1) or E3)

remove duplicate literals

–� (E1 or E1) => E1

remove duplicate clauses

–� (E1 or (not E2)) and (E1 or (not E2)) => (E1 or (not E2))

reduce by tautology

–� (E1 or � or (not E1)) => true

definition of and/or

–� true and E1 => E1 false and E1 => false

–� (true or E1) => true (false or E1) => E1

Brian Williams, Fall 10
91

Reducing Propositional Formula

to Clauses (CNF)

1) Eliminate IFF and Implies

•� E1 iff E2 => (E1 implies E2) and (E2 implies E1)

•� E1 implies E2 => not E1 or E2

2) Move negations in towards propositions using

De Morgan s Theorem:

•� not (E1 and E2) => (not E1) or (not E2)

•� not (E1 or E2) => (not E1) and (not E2)

•� not (not E1) => E1

3) Move conjunctions out using Distributivity

•� E1 or (E2 and E3) => (E1 or E2) and (E1 or E3)

4) Simplify by Equivalence
Brian Williams, Fall 10

92

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

