
1

Model-based Programming

of Robotic Space Explorers

mers.csail.mit.edu

Brian C. Williams

16.410 / 16.413

October 18th, 2010

Outline

•� Robotic Exploration

•� Model-based Programming

and Execution

2

Robotic Spacecraft Require Large Human Teams to Operate�

Image credit: NASA.

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

3

But They Still Fail

Mars Observer�

Mars Polar Lander Failure

Programmers are overwhelmed

by the bookkeeping of reasoning

about unlikely hidden states

 Leading Diagnosis:

•� Legs deployed during descent.

•� Noise spike on leg sensors

latched by software monitors.

•� Laser altimeter registers 50ft.

•� Begins polling leg monitors to

determine touch down.

•� Latched noise spike read as

touchdown.

•� Engine shutdown at ~50ft.

Fault Aware Systems:

Create executives

That reason and coordinate

on the fly from models

Mars Polar Lander Failure

Image credit: NASA.

© Source unknown. All rights reserved.
This content is excluded from our
Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

4

Outline

•� Robotic Exploration

•� Model-based Programming

and Execution

1999:Remote Agent on Deep Space One

1.� Commanded by giving goals

2.� Closes loop on goals

3.� Reasons from
commonsense models

Goals�

Diagnosis
& Repair�

Mission
Manager� Executive�

Planner/�
Scheduler�

Remote Agent�

[Williams & Nayak, AAAI 95;

 Muscettola et al, AIJ 00]

5

How Should Engineers Guide

Model-based Executives?

engine to standby�
planetary approach� switch to�

inertial nav� rotate to entry-orient�
& hold attitude�

separate�
lander�

•�Through programs?

•�By specifying goals?

•�A little of both?

Descent engine to standby :�

off�
heating�
30-60 sec�standby�

engine to standby�
planetary approach�

separate�
lander�

switch to�
inertial nav� rotate to entry-orient�

& hold attitude�

Mission Storyboards

Specify Evolving States

6

engine to standby�
planetary approach�

separate�
lander�

switch to�
inertial nav� rotate to entry-orient�

& hold attitude�

Switch navigation mode:�

Earth-relative = Star Tracker + IMU�

Switch navigation mode:�

Inertial = IMU only�

Mission Storyboards

Specify Evolving States

engine to standby�

Rotate spacecraft:�

•� command ACS to entry orientation�

planetary approach�

separate�
lander�

switch to�
inertial nav� rotate to entry-orient�

& hold attitude�

Mission Storyboards

Specify Evolving States

7

engine to standby�

Rotate spacecraft:�

•� once entry orientation achieved,
ACS holds attitude�

planetary approach�

separate�
lander�

switch to�
inertial nav� rotate to entry-orient�

& hold attitude�

Mission Storyboards

Specify Evolving States

engine to standby�

Separate lander from cruise stage:�

planetary approach�

separate�
lander�

switch to�
inertial nav� rotate to entry-orient�

& hold attitude�

cruise�
stage�

lander�
stage�pyro�

latches�

Mission Storyboards

Specify Evolving States

8

Model-based Programs, Like Storyboards,

Specify the Evolution of Abstract States

Embedded programs:

•� Read sensors

•� Set actuators

Embedded Program

S
Plant

Obs Cntrl

Model-based programs:

•� Read abstract state

•� Write abstract state

Model-based
Embedded Program

S
Plant

Model-based executives map

between state, sensors & actuators.

S
Model-based Executive

Obs Cntrl

Model-based Program =

 Control Program on State

 + Plant Model
[Williams et al, IEEE Proc 02]

Model-based Programming

of a Saturn Orbiter
Turn camera off and �
engine on�

EngineA EngineB

Science Camera

OrbitInsert()::

do-watching (EngineA = Thrusting OR

 EngineB = Thrusting)

parallel {

EngineA = Standby;

EngineB = Standby;

Camera = Off;

do-watching (EngineA = Failed)

 {when-donext (EngineA = Standby) AND

 Camera = Off)

EngineA = Thrusting};

when-donext (EngineA = Failed AND

 EngineB = Standby AND

 Camera = Off)

EngineB = Thrusting}

9

The program assigns EngineA = Thrusting,

and the model-based executive

Determines that valves�
on the backup engine B�
will achieve thrust, and�
plans needed actions.�

Deduces that a valve �
failed - stuck closed�

Plans actions�
to open�

six valves�

Fuel tank�Oxidizer tank�

Deduces that�
thrust is off, and�

the engine is healthy�

Prog: EngineB = Thrusting

Embedded Program

Expressions:

1.� s Conditions on sensors

2.� u Assignments to control variables

Control constructs:

1.� u�
2.� If s next A

3.� Unless s next A

4.� A, B

5.� Always A

Control assignments

Conditional execution

Preemption

Full concurrency

Iteration

10

Reactive Model-based Program

Idea: A concurrent constraint program (e.g. TCC/HCC [Saraswat et al.])

•� whose constraints c operate on the state of the plant s, and

•� replaces the constraint store with a model-based controller:

1.� c[s]�
2.� If c[s] next A

3.� Unless c[s] next A

4.� A, B

5.� Always A

Primitive constraint on state

Conditional execution

Preemption

Full concurrency

Iteration

Control Sequencer

Deductive Controller

System Model�

Commands�Observations�

Control Program

Plant�

Titan Model-based Executive�RMPL Model-based Program�

State goals�State estimates�

�� Executes concurrently�
�� Preempts�
�� Queries (hidden) states�
�� Asserts (hidden) state�

OrbitInsert()::

(do-watching ((EngineA = Firing) OR

 (EngineB = Firing))

(parallel

(EngineA = Standby)

(EngineB = Standby)

(Camera = Off)

 (do-watching (EngineA = Failed)

 (when-donext ((EngineA = Standby) AND

 (Camera = Off))

(EngineA = Firing)))

 (when-donext ((EngineA = Failed) AND

 (EngineB = Standby) AND

 (Camera = Off))

(EngineB = Firing))))

Closed

Valve

Open
Un-
known

Stuck
closed

Open Close

0. 01

0. 01

0.01

0.01

inflow iff outflow

11

���������������������

� � �

� �

��������������

� � �

�� � � �� � � �� � ��

� � �
� � � �� � � �� �

�� � ��� � � �� � � �� � � �� � �

� � �
� � ��� � � �� � � �

� � � �� �

•� Automata are hierarchical.

•�Automata locations and transition guards

 have associated constraints on plant state s.

RMPL Semantics is in

Terms of Constraint Automata

OrbitInsert()::

 do-watching (EngineA = Thrusting OR

 EngineB = Thrusting)

in-parallel {

EngineA = Standby,

EngineB = Standby,

Camera = Off,

do-watching (EngineA = Failed)

when-donext (EngineA = Standby AND

 Camera = Off)

EngineA = Thrusting,

when-donext (EngineA = Failed AND

 EngineB = Standby AND
 Camera = Off)

EngineB = Thrusting

 }

Components are Modeled using

Probabilistic Constraint Automata
component modes�

described by logical constraints on variables�

deterministic and probabilistic transitions

 cost/reward

Open

Valve Model

Closed

close
cmd

open
cmd

(inflow1 = zero) AND
(inflow2 = zero)

(inflow1 = normal) IFF
(iflow2 = nomal)

0 v

20 v

0.01

0.01

0 v

Logic/Constraints + Markov Processes + Concurrency�

12

Control Sequencer

Deductive Controller

System Model�

Commands�Observations�

Control Program

Plant�

Titan Model-based Executive�RMPL Model-based Program�

State goals�State estimates�

Generates target goal states�
conditioned on state estimates�

Mode�
Estimation�

Mode�
Reconfiguration�

Tracks�
likely �

plant states�

Tracks least �
cost goal states�

�� Executes concurrently�
�� Preempts�
�� Queries (hidden) states�
�� Asserts (hidden) state�

OrbitInsert()::

(do-watching ((EngineA = Firing) OR

 (EngineB = Firing))

(parallel

(EngineA = Standby)

(EngineB = Standby)

(Camera = Off)

 (do-watching (EngineA = Failed)

 (when-donext ((EngineA = Standby) AND

 (Camera = Off))

(EngineA = Firing)))

 (when-donext ((EngineA = Failed) AND

 (EngineB = Standby) AND

 (Camera = Off))

(EngineB = Firing))))

Closed

Valve

Open
Un-
known

Stuck
closed

Open Close

0. 01

0. 01

0.01

0.01

inflow iff outflow

Control Sequencer

Deductive Controller

System Model�

Commands�
Observations�

Control Program

Titan Model-based Executive�RMPL Model-based Program�

State goals�State estimates�

Control Sequencer:�
Generates goal states �

conditioned on state estimates�

Mode�
Estimation:�

Tracks likely �
States�

Mode�
Reconfiguration:�
Tracks least-cost�

state goals�

�� Executes concurrently�
�� Preempts�
��Asserts and queries states�
�� Chooses based on reward�

Fire backup�
engine�

Valve fails�
stuck closed�

S T

X
0

X
1

X
N-1

X
N

S T

X
0

X
1

X
N-1

X
N

least cost reachable

goal state First Action Current Belief State (modes)

Plant

13

Deductive Controller

Commands�
Observations� Plant�

State goals�State estimates�

Mode�
Estimation:�

Tracks likely �
States�

Mode�
Reconfiguration:�
Tracks least-cost�

state goals�

Optimal CSP:�

 arg min f(x)�

 s.t. C(x) is satisfiable�

 D(x) is unsatisfiable�

arg min Pt(Y| Obs)�

s.t. �(X,Y) �� O(m) is consistent�

arg max Rt(Y)�

s.t. �(X,Y) entails G(X,Y)�

s.t. �(X,Y) is consistent�

s.t. Y is reachable�

Mode Reconfiguration:�

Select a least cost set of commandable
component modes that entail the
current goal, and are consistent.�

�

Mode Estimation:�

Select a most likely set of next
component modes that are consistent
with the model and past observations.�

Reactive Planning

for Reconfiguration

Reactive Planning 26
Reactive Planning 26

Goal State

Driver On Off

C
u

rr
e
n

t
S

ta
te

On idle cmd = off

Off cmd = on idle

Reset-
table

cmd = reset cmd = off

Goal State

Valve Open Closed

C
u

rr
e
n

t
S

ta
te

Open idle
driver = on

cmd = close

Closed
driver = on
cmd = open

idle

Stuck failed failed

Off

On
Reset-

table
cmd = off cmd = on

cmd = reset

cmd = off

Closed

Open Stuck

driver = on

cmd = close

driver = on

cmd = open

14

Variants on Probabilistic Constraint Automata

define a Family of RMPL Languages

•�Complex, discrete behaviors �

•� modeled through concurrency, hierarchy and timed transitions.�

•�Anomalies and uncertainty�

•� modeled by probabilistic transitions�

•�Physical interactions�

•� modeled by discrete and continuous constraints�

Standby

Engine Model

Off

Failed

off-
cmd

standby-
cmd

0.01

(thrust = full) AND
(power_in = nominal)

Firing

0.01

standby-
cmd

fire-
cmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

On

Camera Model

Off

turnoff-
cmd

turnon-
cmd

(power_in = zero)
AND

(shutter = closed)

(power_in = nominal)
AND

(shutter = open)

0 v

2 kv

2 kv

0 v

0 v

20 v

0.01

0.01

0 v

Model-based Programming

of Embedded Systems

•� To survive decades embedded systems orchestrate

complex regulatory and immune systems.

•� Future systems will be programmed with models,

describing themselves and their environments.

•� Runtime kernels will be agile, deducing and planning by

solving optimization problems with propositional

constraints.

•� Model-based reactive planners respond quickly to

failure, while using compile-time analysis of structure to

respond quickly and concisely to indirect effects.

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

