
16.410-13 Recitation 10 Problems


Problem 1: Simplex Method 

Part A 

Solve the following two linear programs using the simplex method. 

LP 1 

maximize 3x1 + 4x2 

subject to x1 + x2 ≤ 4 

2x1 + x2 ≤ 5 

x1, x2 ≥ 0. 

Solution First, we will convert this linear program into standard form. This LP is already a maximization 
problem. To transform the constraints into equality form, let us introduce two slack variables, x3 and x4. 
Then, after writing −3x1 +4x2 +z = 0 for the objective function, we obtain the following system of equations: 

−3x1 − 4x2 + z = 0, 

x1 + x2 + x3 = 4, 

2x1 + x2 + x4 = 5. 

Thus, initial simplex tableau is 

x1 x2 x3 x4 b 

z -3 -4 1 
r1 1 1 1 4 
r2 2 1 1 5 

Now pick the variable that has the smallest constant in the upper row. In this case, it is x2, which has 
a constant -4. This column is our pivot column. To find the pivot row. Divide all the entries in the pivot 
column corresponding to the constraints, i.e., r1 and r2, by the values in the constant column. For r1 we get 
4 1= 4, and for r2 we get = 5. Pick the smallest of the two, which is 4. That is, r1 is our pivot column; our 1 5 
pivot element is 1, which lies both on the pivot row and the pivot column. Now, perform linear operations 
to convert the pivot column into a unit column. Thus you should perform the following row operations: 

Rz = Rz − 4Rr1 , 

Rr2 = Rr2 − Rr1 , 

which results in the following tableau: 

x1 x2 x3 x4 b 

z 1 4 16 
r1 1 1 1 4 
r2 1 -1 1 1 
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We quickly realize that all the entries of the top column are all zeros. Hence, we have found a solution. 
The variables that are not assigned zero are those that correspond to a unit column. In this case, x2 and x4, 
which take values x2 = 4 and x4 = 1. The other variables take value zero, i.e., x1 = 0 and x3 = 0. Finally, 
the objective function is read as z = 16. 

LP 2 

minimize	 −2x1 + x2 

subject to	 x1 + 2x2 ≤ 6 

3x1 + 2x2 ≤ 12 

x1, x2 ≥ 0. 

Solution This problem is a minimization problem. We will need to turn it into a maximization problem 
to represent it in the standard form. We multiple the objective function by -1 to obtain the maximization 
problem we are looking for. 

maximize	 2x1 − x2 

subject to	 x1 + 2x2 ≤ 6 

3x1 + 2x2 ≤ 12 

x1, x2 ≥ 0. 

Introducing the slack variables x3 and x4 for the two constraints, our initial tableau is as follows: 

x1 x2 x3 x4 b 

z -2 1 0 
r1 1 2 1 6 
r2 3 2 1 12 

We notice that the first column is the pivot column and r2 is our pivot row. After appropriate algebraic 
manipulation to make the pivot column a unit column, we arrive at the following tableau: 

x1 x2 x3 x4 b 

z 5/3 1/3 8 
r1 4/3 1 -1/3 2 
r2 1 2/3 1/3 4 

We are done since the first row reads all positive values. Now, we read off the values as x1 = 4 and x2 = 0. 
The objective value for the maximization problem is z = 8. Hence, the objective value of the maximization 
problem is -8. 

Part B 

Consider the case when all the coefficients corresponding to the variables (and the slack variables) of the 
topmost row of your tableau equals to zero. What would that imply? Can you find an example? 

Solution: That would imply the existence of infinitely many solutions (Why?). 
For example, consider the following LP: 

maximize x1 + x2 

subject to x1 + x2 ≤ 1. 
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The geometric representation of this LP is shown in the figure below. Clearly, any point along the bold 
line is a maximizes the objective function while respecting the constraints. Hence, this LP has infinitely 
many solutions. Let us show this by going through the steps of the simplex algorithm. 

1
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Figure 1: Geometric representation of the LP 

We define a slack variable x3 for the single constraint of the problem. The initial tableau is 

x1 x2 x3 b 

z -1 -1 0 0 
r1 1 1 1 1 

We pick the first column as the pivot column and the row labeled by r1 as the pivot row. We do the 
algebraic operation required to make the pivot column a unit column, which results in the following tableau: 

x1 x2 x3 b 

z 0 0 0 1 
r1 1 1 1 1 

Hence, we end up with the first row containing all zeros. 

Problem 2: Transportation 

Consider a network of mines/factories each of which use others products to produce their own. For instance, 
the iron ore produced by an iron ore mine is used to produce steel in a steel mill. This steel is used to 
produce mine wagons, which are then used by the iron ore mines. You would like to optimally coordinate 
the logistics operations between these mines/factories. 

Assume that there are n factories, which are connected with roads. Nodes are assumed to be one way, 
since you are using certain transportation companies that only operate one way between the factories. A 
road from factory i to factory j is described by the pair (i, j). Denote the set of all roads by A. Each 
(directed) road is operated by a single transportation company. The company operating road (i, j) charges 
ci,j dollars per each pound of cargo. Moreover, the company only has resources (e.g., trucks, trains) to carry 
up to ui,j tons of cargo per hour. Each factory k generates a certain product at a rate bk,l tons per hour that 
needs to reach factory l, either through a direct road (k, l) or through some other path in the road network. 
Products from the same origin can be split into parts and transported through different paths. 

Formulate this problem as a linear programming problem. This problem is called the multicommodity flow 
problem, extensively studied in operations research. Similar problems are studied, e.g., for the optimization 
of future space logistics. 
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Figure 2: Multicommodity flow


Solution Introduce the variables xk,l that indicate the amount of product transported with origin k and
i,j 
destination l that traverses link (i, j). Then, 

bl,k 
i = 

⎧ ⎪⎨ ⎪⎩ 

bl,k, if i = k, 

−bk,l, if i = l, 

0 otherwise. 

You can think of bk,l i as the “net amount” of products going into factory site i coming from factory k 
and trying to reach factory k. Then, the following formulation can be used to solve the problem 

n n

minimize k,l ci,j xi,j 
(i,j)∈A k=1 l=1 

k,l k,l k,l subject to xi,j − xi,j = bi , for all i, k, l = 1, 2, . . . , n, 
{j | (i,j)∈A} {i | (i,j)∈A} 

n n

xk,l ≤ ui,j , for all (i, j) ∈ A,i,j 
k=1 l=1 

xk,l for all (i, j) ∈ A k, l = 1, 2, . . . , n. i,j ≥ 0, 

The first constraint is called the flow conservation constraint, which is very similar to the constraint we 
have introduced in the lecture when formulating the shortest path problem as a linear program. This flow 
conservation constraint ensures that any product coming into factory i goes out of the factory. That is, 
factory i does not “consume” a product unless the product was sent to factory i. The second constraint 
ensures operation within the constraints of cargo company operating a particular road. 
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