Patriot Missile Supervisory Control Study

Luca F. Bertuccelli

16.422 13 May 2004 Massachusetts Institute of Technology

Recent Historical Events

• 23 March 03

- RAF Tornado GR4 shot down
- 2 aircrew killed

• 25 March 03

- F-16 C/J "illuminated" by Patriot radar
- Fires a missile to destroy radar, no injuries

• 2 April 2003

- USN F/A-18C shot down
- Pilot killed

Motivation

- Accidents attributed to "ghosting," fictitious targets showing up on operator radar displays (1991)
 - Other Human Supervisory Control (HSC) issues
 - Even in open reports and presentations HSC issues ignored
 - E.g., "The upgraded radar which is supposed to allow crews to track and discern as many as 100 objects at a time..."¹
- This study gives an analysis of the principal HSC issues surrounding Patriot missile system
 - Give a global picture of issues, stepping stone to future experiments or research in system

Conjecture: Patriot system is a complex system that is virtually unstudied from a HSC viewpoint

Presentation Outline

• Overview

Supervisory Control Discussion

Display layout

- Design issues
- Operational issues

– Automation and Consent

Management by consent or exception

– External Pressure

- Time
- Life or death situation

Information and Communication

• Studies by Adelman et.al.

Focus of presentation

Patriot System

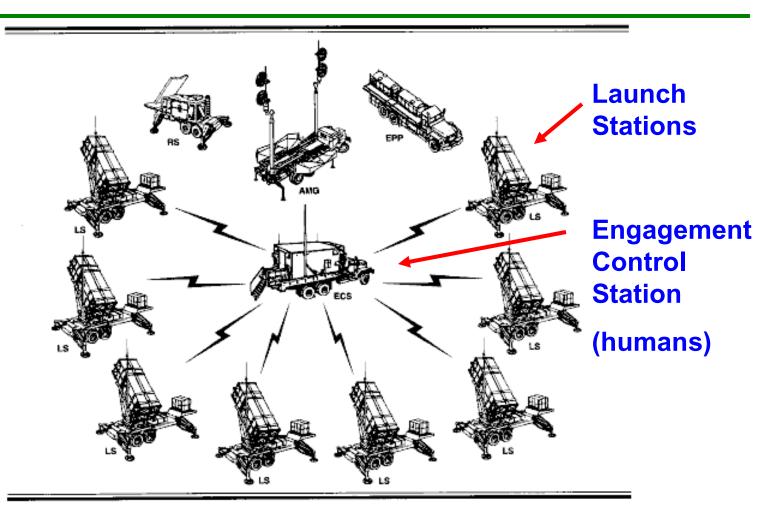
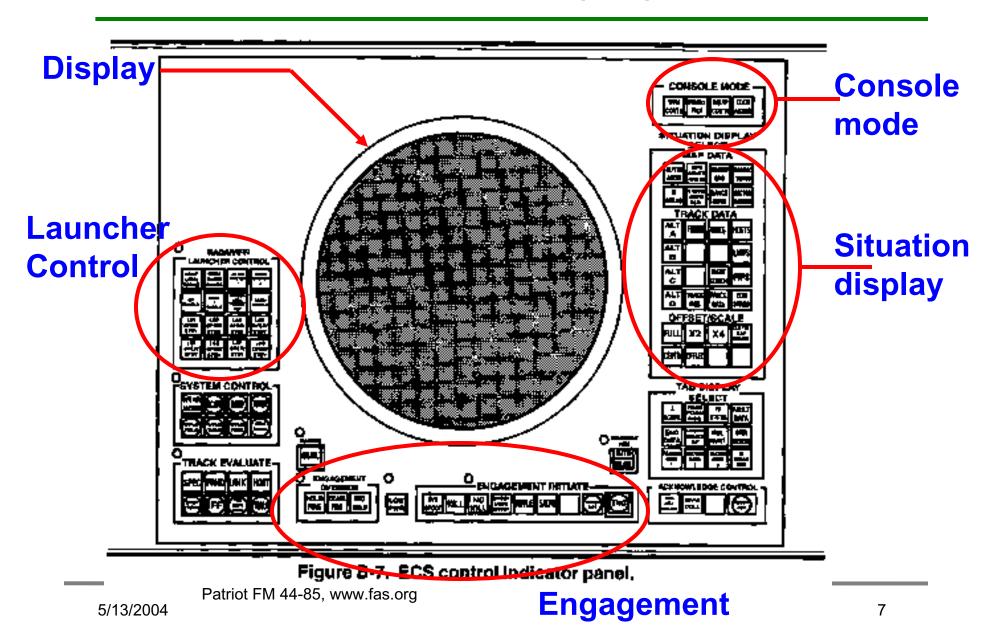



Figure B-3. Patriot fire unit.

Patriot System

- Crew composition¹
 - Tactical Control Officer (TCO)
 - Identification
 - Engagement decision
 - Tactical Control Assistant (TCA)
 - Fires the missile
 - Aids TCO in track information
 - Operator detached from automation
 - Situational Awareness required for missile system and threat
 - Crew training
 - Simulators
 - Crew consoles

Control Indicator Panel (CIP) Overview

CIP Design

Engage button and override

- In front of operator

Lighting coloring schemes

- Friendly (green)
- Unknown (amber)
- Hostile (red)

STARS Display

- Clutter
 - Missile status display below map display, monochrome
- Size and Shape
 - Display estimated at 15in radius, circular
- Panel Arrangement
 - Empty space for larger display?

CIP Design

"Operational" Clutter

- Defended areas
- Weapon control areas
- Masked terrain
- Launch now intercept points, predicted intercept
 - Available on CIP

Situational Awareness

- Battlefield situation
- Aircraft flying in and out of "engagement zones"
- Threat
- Lack of immediate feedback

Technology improves, display does not...

- False Targets (ghosting)
 - False alarms
 - Not trained for in CIP simulators

Older CIP

See image at

http://www.globalsecurity.org/space/library/report/2004/patriot-shot-friendly_20apr2004_apps1-2.pdf

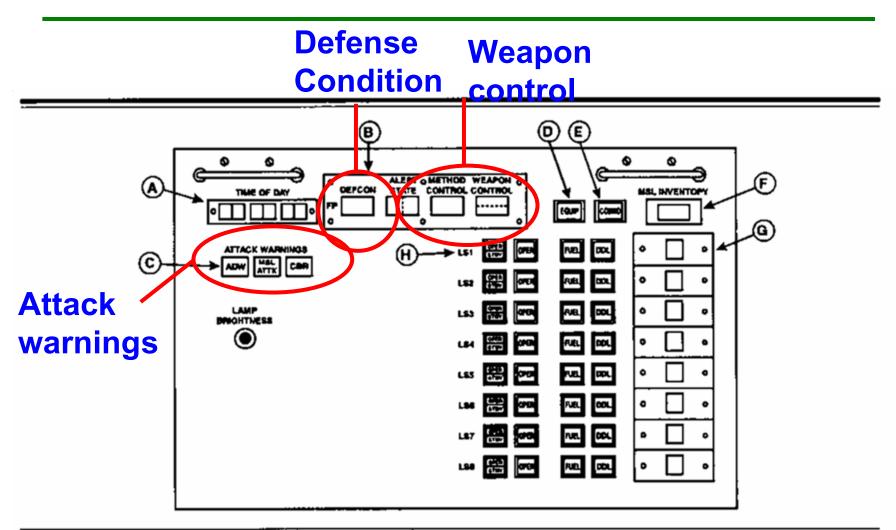
Automation and Consent

- Patriot operators act as ATC controllers and nuclear plant operators
 - Need to maintain SA about air traffic, but cannot **directly** *control* the traffic
 - Wait for event which requires *precise and quick* response
 Vigilance

Target engagement process

- Launch detection by radar; AWACS, PAWS, Cobra Judy, *and* others
 (!) generally contribute to providing information [20 sec]
- TCO verifies launch, expected impact point (if missile) via impact ellipse, positive ID on target (IFF) on CIP; TCA assists in ID [10-60 sec]
- Launch station selected, data uploaded to missile [20 sec]
- Missile launch

Automation and Consent


- Identification Friend or Foe
 - Identifies friendly or unfriendly aircraft, challenge-response
 - IFF ID:
 - Patriot crew query aircraft
 - If unknown, can query system for flight track history (on CIP)
 - AWACS, and other sources (if functioning)
- Trust
 - "The Patriot...can shoot down anything that flies" (TCO)¹
 - "Intercept rate...possibly even 0%" (Prof. Postol, MIT)
- Management by Consent/Exception
 - Semi-Automatic
 - Automation queries, crew responds; less timely, more human information processing
 - Automatic →Shoot-downs believed to be in this mode
 - System automatically engages without crew input; timely, less human information processing

External Pressures

• Time

- Al Hussein missile: 6-7 minute TOF
- Al Samoud missile: 3-4 minute TOF
- Fear
 - "Fog of war"
 - Induced by information of NBC attack, prior information
 - Partially emphasized by ECS Status Panel (shown next)
 - Automatic vs. Semi-Automatic
 - Yet, **0** Patriot crews killed in combat
- Missed Detections and False Alarms are *both* expensive
 - Not launching a missile could result in numerous deaths, 1000s
 - Launching a missile could result in shooting down a friendly aircraft,
 <10 deaths

External Pressure

Figure B-9. ECS status panel.

5/13/2004 Patriot FM 44-85, www.fas.org

If there is a problem with the radar, why do the crews still put the system in automatic mode???

Signal Detection Theory

(Image removed due to copyright considerations.)

Signal Detection Theory

- Signal Detection Theory *mismatches* with actual events
 - SDT approach to the "ghosting effect"
 - Placing missiles in automatic mode
- Crews seemingly do not
 - Change their threshold
 - Lose trust in the system
 - The loss of aircrew not comparable to the loss of thousands of civilians?
- **Conjecture:** SDT does *not seem* to describe Patriot crew situation completely
- Possibility
 - Mismatch between crew SOC model and true SOC model???
 - Time, pressure must be included in overall model

Note: Overall system not considered here, only detection

Conclusion

- Patriot is *extremely* complex system
- Some inherent technical difficulties that are still being worked on, BUT...
 - Numerous HSC issues *not* addressed in open literature
- Recommendations of this case study
 - 1. Display design
 - Expensive to redesign or retrofit
 - Beneficial to take examples from ATC
 - 2. Understand better role of battlefield pressure and ghosting on crew
 - Will help in display design
 - Less expensive to do if crew trained, software fixed
 - 3. Understand Patrior crew model of the system

References

- 1. US Army Field Manual 44-85 (http://www.fas.org)
- 2. Lecture notes by Prof. Ted Postol (http://www.globalsecurity.org)
- 3. BBC
- Wickens, C.D. and J. Hollands. *Engineering Psychology and Human Performance*. Prentice-Hall, 1999.
- 5. Kuchar, J. Lecture Notes, 2002.