Maxwellian Collisions

Maxwell realized early on that the particular type of collision in which the cross-section
varies at QF, ~ 1/g offers drastic simplifications. Interestingly, this behavior is physically
correct for many charge-neutral collisions and moderate energies: The charge ¢ polarizes the
neutral in proportion to the field (a ~ ¢/r?) and the dipole a attracts the particle with a
force F' ~ /13 ~ q/r5. From our work on power-law potentials, this is the interaction type
that leads to Q* ~ 1/g.

The simplification stems from the fact that the group gQ7,(g) appears in the integrals for
M, and E,¢, and can now be moved outside as a constant. We put,
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Define v, as the collision frequency of one s-particle will all r-particles,

Ver = n,ygQrs(g)| constant for Maxwellian collisions (1)

Similarly, v,.s = nsgQr(g) (Note: vg./n, = vps/ng)
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For other types of collisions the evaluation is much less straightforward, as it requires prior
solution for f, and f,. However, the form Mrs = sty Vps(U, — Us) can always be recovered,
only the collision frequency v, is generally not a constant, but a function of the electron
temperature, and is calculated from some of the existing models for f. and f,.



For energy transfer, we will deal directly with the internal energy transfer rate,
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From the definitions,
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and for Maxwellian collisions, the group ¢gQ*,(g) is a constant and moves outside the in-
tegration. The velocity combination inside can be manipulated next. Define the random
velocities ¢, = W — Uy, G = W — Uy
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Calling for short m, +ms = m, and ignoring the linear terms, because they integrate to zero
(notice (Cs)s = 0, (C.), = 0),
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Substitute into (4):
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The first of the integrals is simply n,n,. The second can be reorganized into [ d*w fs [ f.,mc2d*w,
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of which the inner integral yields 3kT.n,, while the outer one gives n,. With a similar argu-
ment for the third integral, we obtain

Er, = Enn (9@ ), (i, — @) 4 3K(T) — T))] (6)
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This has an interesting structure. The m, (i, — 63)2 term represents an irreversible internal
energy addition (heat) to species s from collisions with 7, provided the two species drift at
different mean velocities. The second term, in (7). — T%) is the transfer of heat from  to s
when the two species have different temperatures. It is reversible, depending on the sign of

T —T..

For completeness, we can now calculate the transfer of full kinetic energy, E,, = E;S—H_[S -Mrs,
with the result
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Some simple applications of the Momentum Equations

Electrons Ohm’s Law - Except for high-frequency effects (of the order of the Plasma Fre-
quency) or for very strong gradients (like in double layers), the inertia of electrons can be
neglected in their momentum balance. Assume collisions of electrons happen with one species
of ions and one of neutrals only:
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where we used fie; = Me, fhen = M. In many cases, u; <K U, U, < U, and we can simplify
the equation by introducing the electron current density,
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me(Vei + Ven)



— P/ - — -
so that 0<E+v e) = Je+ Je X [e (12)
eNne

Notice:

(a) Electron pressure gradients can drive electron current. This is sometimes called a “dia-
magnetic current”.
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(b) As a limit, if boundary conditions forbid currents, j. = 0, then E+ Z:: =0,FE= —Zf:: ,
which means density gradients can set up a field — the Ambipolar field. If 7, & const.
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Which strongly resembles the kinetic Boltzmann relationship (except this time we only look
at averages).

(¢) The Hall parameter is the ratio § = < of election gyro frequency to electron collision
frequency. It can be large in low-density plasmas, even with moderate B fields.

(d) The current is not aligned with the driving fields. Additional deviations from the electric
field result from E* = E + ZTP:

(e) Eq. (12) can be solved for j, in terms of E* = E 4+ Y= Start by multiplying (cross

ene

products) times Ee:
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consider only the current perpendicular to B , so that B. -je =0:
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and substitute this into (12): ¢E* = j., + 82j.. — 0. x E*, or
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This is sometimes organized as a tensor equation. With z taken along B:
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which makes the anisotropy of the situation more clear. In Ionospheric Physics, this is also
put as a conductivity tensor
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op = “Pedersen conductivity” (very small in the ionosphere, G, > 1)
og = “Hall conductivity” (intermediate)
o = o “Parallel conductivity” (very large in the ionosphere)

Ambipolar Diffusion
Consider a simple case with B = 0, negligible inertia. Write both, electron and ion momen-
tum equations:
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Add together, note n.v.; = n;v;e (and also n, = n;),
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Also, normally VT!/T! < Vn./n.. In addition let us assume that ion inertia can be also
neglected in comparison with the other terms in the momentum balance (although keeping
the term would be more general),
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Sometimes neutrals return from recombination of ions, so,
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Back to the electron equation, if we neglect both collision forces,
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V(e¢ — kT, In n.) = 0

Equivalent Boltzmann equilibrium




MIT OpenCourseWare
http://ocw.mit.edu

16.55 lonized Gases
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

