
Plasma-Wall Interaction: Sheath and Pre-sheath

Under most conditions, a very thin negative sheath appears in the vicinity of walls, due to
accumulation of electrons on the wall. This is in turn necessitated by the need to reduce the
electron flux well below the un-inhibited thermal flux nec̄e/4, which would lead to very high
negative current densities toward the wall. In the limit of an insulating wall, we must have
Γe = Γi � nec̄e/4, and the flux equality imposes a specific sheath potential drop (see later).
But even where there is net negative current (electron capture) its magnitude is still low
enough compared to the thermal value that a negative sheath forms (somewhat against in-
tuition). Any ion arriving at the sheath’s edge will be accelerated by the sheath and captured
by the wall. This non-zero ion flux requires, by continuity, a means of accelerating ions from
conditions far from the wall, unless these conditions already imply a strong wall-directed
ion flux. Thus, there is normally a Pre-sheath where the plasma is still neutral, but the
potential is already falling toward the wall. The specifics of the pre-sheath vary depending
on the situation, and in most cases conditions are 2D or 3D. In contrast, the sheath is almost
always so thin as to be 1D, and its physics is simpler and universal, largely independent of
outside conditions. For this reason we analyze first the sheath, and it will turn out that its
entry condition provides the required wall boundary condition to use for the much larger
scale of the pre-sheath.

The Sheath

Because the sheath thickness (a few Debye lengths) is usually much less than any collisional
�mean free path, we ignore collisions in it. With no magnetic field (or with B not nearly

parallel to the wall), the electron force balance is between pressure and potential gradients,
leading to Boltzmann equilibrium:

e(φ−φs)

ne = nese kTe (1)

Where ©s is the sheath’s edge. Actually, this balance is also valid in the pre-sheath, although
less rigorously.
For ions with no scattering or ionizing effects:

niui = nisuis (2)
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u2

is + eφs (3)
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and eliminating ui between (2) and (3):
nis

ni = √
1 + 2e(φs−φ)

(4)

miu2
is

The net charge density ρch = e(ni − ne) can then be used in Poisson’s equation

d2φ ρ
=

dx2

− ch

ε0

:
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d2φ

dx2
=

e

ε0

[
nese

− e(φ−φs)
kTe − nis√

1 + 2e(φs−φ)
(5)

miu2

]
is

and, actually, nes = nis since this must connect with outside, neutral zone. We can simplify
notation by defining non-dimensional variables,

e(φs
ϕ =

− φ)

kTe

≥ 0 ; ξ =
x

λDs

; λDs =

√
ε0kTe

e2nes

; Mis =
uis√

kTe

(6)

mi

This yields,
d2ϕ

dξ2
= −e−ϕ +

1√
1 + 2ϕ

(7)

M2
is

A first integral of (7) is obtained by multiplication times dϕ
dξ

and integration of the RHS with
respect to ϕ:
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− (8)

The constant of integration C is obtained by imposing zero slope at s (but only on the
magnified sheath scale!). At s we also have ϕ = 0, so

C = 1 + M2
is (9)

When taking the square root in (8), the (−) sign is appropriate since dφ
dξ

< 0 in the sheath:
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−
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Unfortunately, a second integration is not analytically feasible, but important information
can be obtained by examining the radicand of (10) near the sheath’s edge, i.e. when ϕ � 1:
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The leading term (in ϕ2) must be positive or zero for real solutions near the sheath edge:

M2
is ≥ 1 (12)

and this is called the Bohm sheath criterion. Supersonic ion entry is uncommon, so we will
accept the weaker criterion.

Mis = 1 (13)

When this is satisfied, the next term in (11) is 1ϕ3 > 0, and the sheath potential profile is
3

real. Thus, the ions enter the sheath at their (isothermal) speed of sound,

uis =

√
kTe

mi

(14)
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and this is the boundary condition needed for the outer (pre-sheath) solution. Once ϕ
exceeds unity (φs − φ ≥ kTe), the expression (10) simplifies (roughly) to

dϕ

dξ
= −

√
2

√
M�2

is

2ϕ
= 23/4ϕ1/4 (15)���Mis

↑ Mis = 1

which can be integrated:
−ϕ− 1

4 dϕ = 23/4dξ

−4
ϕ3/4 = 23/4ξ + D

3

where, using ϕ = 0 at s, D = −23/4ξs

25/4

ξs − ξ = ϕ3/4 (16)
3

− 25/4

In particular, at the wall ξ = ξw, ϕ = ϕw, so the sheath thickness is ξs ξw =
3

ϕ
3/4
w .

In physical variables,

xs − xw

λDs

=
25/4

3

(
eΔφsh

3

kTe

) /4

(17)

so the sheath increases in thickness with the 3/4 power of the sheath potential drop. Putting
also in (17) the definition of λDs , we can reorganize it in the form

4
√

ji = enesuis =
2

9

√
e

mi

ε0
Δφ

3/2
sh (18)

(xs − xw)2

which is the Child-Langmuir equation for space-charge limited current.

The Collisional Pre-sheath

An alternative derivation of the Bohm criterion could be arrived at in the following way.
Start with steady 1D flow and impose continuity of ion flow and quasineutrality,

d
(neui) = 0 and ne = ni

dx

And include momentum conservation for both ions and electrons,

dui
nemiui

dx
+

dpi

dx
= neeEx − mineνinui

������
nemiue

due dpe
+

dx
=

dx
−neeEx − meneνenue

Adding these equations and combining with continuity, we can write,

d

dx
(mineu

2
i + pi + pe)︸ ︷︷ ���= 0 − mineνinui −�m�en�eνenue

nek(Te+T

︸
i)
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or, with Te � Ti,

���� d
(neui)

dx
(miui +

kTe ��)
ui

� −miνin�(n�eui)

So, we get the same sheath entry velocity

uis =

√
kTe

mi

= uBohm

Particle and energy flux to a wall

(A) Random particle flux across a plane

Assume a Maxwellian distribution:

f = n
( m

2πkT

)3/2

e
−

w2︷ ︸︸
m(w2

x + w2
y + w2

z)
︷

2kT (19)

The forward directed flux across a plane (say, the yz plane) is,

∞ ∞ ∞

Γx =

ˆ
dwy

ˆ
dwz

ˆ
wxf(w�)dwxdwydwz (20)

wy=−∞ wz=−∞ 0

It is actually better to use spherical velocity conditions, where wx = wcosθ and
dwxdwydwz = d3w = 2πw2sinθdwdθ:

π∞

Γx =

ˆ

w=0

ˆ2

f(w)2πw3sinθcosθdθdw (21)

θ=0

π/2 π/2ˆ ˆ
sin2θ

Integrate first on θ : sinθcosθdθ = d(

0 0
2

) =
1

(22)
2

∞

Γx = π

ˆ
f(w)w3 m

dw = πn(

w=o
2πkT

)3/2

∞̂

0

e−
mw2

3
2kT w dw

Change variables: mw2

2kT
= ζ, wdw = kT

m
dζ

Γx = πn(
m 2

)3/2 kT

2πkT m

kT

m

∞̂

0

ζe−ζdζ

︸ ︷︷
1

=

1
︸

√
2π

n

√
kT

m
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Γx = n

√
kT

(23)
2πm

This is usually written in terms of the mean value of the velocity c̄ ≡ 1
∞ π

n

´
0

´
wf(w)2πw2sinθdθdw,

0

which, with a similar calculation gives,

c̄ =

√
8 kT

π m
(24)

By division of (5) and (6), we obtain

Γx =
nc̄

4
(note x is an arbitrary direction in this case) (25)

(B) Random flux of kinetic energy across a plane

We now want to calculate:

∞ π/2

ΓE =

ˆ ˆ
1

(

w=0 θ=0

mw2)f(w)(wcosθ)2πw2sinθdθdw (26)
2

π
= m

2

∞̂

w=0

w5f(w)dw = m
π

2
n(

m

2πkT
)3/2

∞̂

w=0

w5e−
mw2

2kT dw (27)

Using the name change of the variable of before,

π
ΓE = m

2
n

(
m

2πkT

)3/2
1

2

(
2kT

3

m

) ∞̂

ζ2e−ζdζ

0︸ ︷︷ ︸
����−ζ2e−ζ

∞́

0

+2
∞́

0

ζe−ζdζ=2

ΓE = 2kT

√
kT

(28)
2πm

and comparing to (6) , ΓE = Γx2kT (29)

So the average particle that crosses the plane carries an energy 2kT . This is more than the
average energy per particle (3kT ) because faster particles cross more often.

2

(C) Particle flux to a repelling wall
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This could be electrons approaching a negatively charged wall, with a sheath in front. We
do the calculation outside the sheath, and, if there are no collisions, the same flux will cross
any plane, including the wall plane. The calculation is like in part (A), but now we notice
that not all particles reach the wall: they must have enough x-directed energy to overcome
the repulsion. If qφw > 0 (for example, electrons, with q = −e to a negative wall), we need,

m(wcosθ)2

qφ
2

≥ w (30)

and for a fixed w,

θMAX = cos−1

√
2qφw

(31)
mw2

and so the inner integration (on θ) now gives,

θM̂AX θMAX

sinθcosθdθ =

ˆ
d

0 0

(−cos2θ

2

)
=

1

2

(
1 − cos2θMAX

)
=

1

2

(
1 − 2qφw

(32)
mw2

)

and for the integration (on w), wMIN =
√

2qφw

m
, from (14)

Γ =

∞̂

√
2qφw

m

f(w)w3

(
1 − 2qφw

dw
mw2

)

= πn

(
m

2πkT

)3/2
∞̂

√
2qφw

m

e−
mw2

2kT w3

(
1 − 2qφw

dw
mw2

)
(33)

Using again ζ = mw2

2kT
:

Γx = πn

(
m

2πkT

)3/2
1 2

2

(
kT

m

)2

︸ ︷︷ ︸
nc̄
4

∞̂

qφw

qφ
e−ζζ

(
1 − w

kT

kT

1
dζ

ζ

)

For the last integral, integrate by parts (e−ζdζ = −d(e−ζ)),

nc̄
Γ =

4

[
−

(
ζ − qφw

kT

)
e−ζ

∣∣∣∣∞
qφw
kT︸ ︷︷ ︸

0

+

∞̂

qφw
kT

e−ζdζ

︸ ︷︷ ︸
e−

qφw
kT

]

∴ Γ =
nc̄ qφ

e−
w

4
kT ≤ nc̄

4
(34)
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Clearly, the wall repulsion reduces the flux (strongly if qφw > kT ).

(D) Energy flux to a repelling wall

The same considerations apply now. We start with (8), but with the limits modified as in
part C. The algebra is straightforward, although tedious, and the result is:

nc̄
ΓE =

4
e−

qφw
kT︸ ︷︷ (2kT + qφw)

Γ

︸ (35)

So now the average crossing particle carries an energy 2kT +qφw. The extra qφw per particle
is what is required for it to actually reach the wall, while the 2kT part is what is would carry
in thermal form with no repulsion.

7



MIT OpenCourseWare
http://ocw.mit.edu

16.55 Ionized Gases
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

