
Some important results of Statistical Mechanics

Ionization Equilibrium - Saha’s Equation

Consider the ionization/recombination reaction for an atom A:

A ↔ i+ + e− (1)

The Law of Mass Action for this reaction is,

neni

na

=
qeqi

qa

(
q =

Q
(2)

V

)

When calculating the various partition functions, it is very important to measure all energies
from the same reference. For this particular case, suppose we arbitrarily assign zero energy
to an atom at rest and to an ion at rest. Since the energy needed to produce an electron-ion
pair is eVi, we then have to assign the energy eVi to an electron at rest, or eVi + εR

i . The
translational partition function for an electron,

Qtr.
e =

(
2πmekT

3

h2

) /2

V

ε

was derived based on the set εR
i for the free electron in a box. Since Q =

∑
i gie

− i
kT , we now

have,

Qtr
e =

∑
i

gie
− eVi+εR

i
kT =

(
2πmekT

h2

)3/2

V e−
eVi
kT (3)

Including now the spin degeneracy g = 2 of a free electron,

qe = 2

(
2πmekT

h2

)3/2

e
eVi
kT (4)

Similarly, for ions and atoms, including their electronic excitation degeneracy gi, ga,

qi = gi

(
2πmikT

h2

)3/2

(5)

qa = ga

(
2πmakT

3

h2

) /2

(6)

and since mi � ma, Equation (1) yields,

neni

na

= 2
gi

ga

(
2πmekT

h2

)3/2

e−
eVi
kT (7)

which is called the Saha equation for ionization equilibrium.

As developed, the equation applies to ionization of an atom. Molecules and molecular ions
have other degrees of freedom (vibration, rotation), and the equation needs to be modified
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accordingly. But the modifications are formally very simple: replace gi, ga by the respective
Internal Partition Functions:

Qint
i = Qexc vib rot

i Qi Qi · · ·
Qint

m ; = Qexc
m Qvib

m Qrot
m · · · (m for molecule) (8)

and then,

neni

nm

= 2
Qint

i 2

Qint
m

(
πmekT

h2

)3/2

e−
eVi
kT (9)

In MKS units,
neni Qint

= 2 i

nm Qint
m

× 4.84 × 1021T 3/2e−
eVi
kT (10)

The dominant T dependence is in e−
eVi
kT = e−

Vi
T (eV ) . For moderately low temperatures (up to

a few eV ), this factor is extremely sensitive:

d ln(e−Vi/T )

d ln T
=

Vi
1

T
�

In quasi-neutral plasma ni = ne, and Saha relates ne to na. The full equilibrium composition
requires an extra condition, typically the pressure,

P = (ne + ni + na)kT = (2ne + na)kT

Useful properties for selected atoms:

Element M(g/md) Vi (V) E12 (V)(1st exc.) gatom
0 gion

0 ξ1 (Outer shell electrons)
H 1.008 13.6 10.2 2 1 1
He 4.003 24.6 19.8 1 2 2
Li 6.94 5.39 1.85 2 1 1
N 14.01 14.6 2.38 4 ∼ 9 3
O 16 13.6 1.97 ∼ 9 4 4
Ne 20.18 21.6 16.6 1 ∼ 6 6
Na 23.00 5.14 2.10 2 1 1
A 39.94 15.8 11.5 1 ∼ 6 6
K 39.10 4.34 1.61 2 1 1
Xe 131.3 12.1 8.32 1 4 6
Cs 132.9 3.89 1.39 2 1 1
Hg 200.6 10.4 4.67 1 2 2
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Free electrons in metals

As we saw already, electrons obey Fermi-Dirac statistics:

gi
Ni =

eα+βεi + 1
where α = − μ

kT
and β =

1

kT

We assume, to first order that electrons do not interact among themselves, so only transla-
tional degrees of freedom will be considered.

Let us analyze the case of very low temperature, in the limit T → 0, and define the “Fermi
Energy” as μ = εF , so we have,

gi
Ni =

e
εi−εF

kT + 1

The exponential part of this expression becomes extremely large or very small whenever
εi �= εF , so we identify two regions of interest depending on the energy with respect to the
Fermi level:

1. When εi < εF then Ni = gi Since there can only be one particle in each state (electrons
obey the exclusion principle), all states are occupied. We say the electron gas is
“degenerate”.

2. When εi > εF then Ni = 0 All states are empty.

This situation can be illustrated with the following diagram:

Occupation index 
N

          i

gi

              1 

   Fermi Sea 

           εi  
       εF  

Even at T = 0 there are particles with energies larger than zero (εi < εF ) contrary to the
classical description of an ideal gas that has zero energy for zero temperature.

What is the Fermi Energy?

We know that all particles are contained in the states with energies lower than εF , and that
there is only one particle per state. Assuming that levels are closely spaced between each
other, so the summation can be replaced with an integral, the total number of particles
becomes,

N =

ˆ εF

dg
0
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After solving Schrödinger’s equation for a free particle in a box with volume V = LxLyLz =
L3 we find that the quantum number n and the energy are related by,

L
n =

π

√
2mε

where n2 = n2 2
x + n2

y + nz
�2

Earlier we saw that the degeneracy is the number of quantum states that share the same
energy level. In this case we see that several combinations of the three numbers nx, ny, and
nz will yield a particular n. In fact (see figure), every point over the spherical surface in
the n-space (in the positive octant where the domain of the n’s coincide, since ni > 0 for
i = x, y, z) will have the same energy.

nx 

ny 

nz 

n 

The elementary volume in this space will
then be the elementary part of the degen-
eracy,

dn 4πn2dn
dg = 2

8

where the “2” comes from the spin of elec-
trons (“up” or “down”), while the “8” is
there since we are only interested in the oc-
tant where the n’s exist.

Combining the last two expressions we see
that,

∂g
dg =

∂ε
dε = gεdε =

V

2π2

(
2m

�2

)3/2 √
εdε

which can be integrated directly,

ˆ εF V
dg =

0

2

3π2

(
m

3

�2

) /2
3/2

εF = N

Finally we solve for the Fermi energy,

εF =

(
3π2N

V

)2/3
�

2

2m

Example: For Cu,

N

V
=

# atoms # electrons
=

Vol Vol
=

NA

w
ρ =

6.02 × 1026 kmol−1

8940 kg/m3 = 8.5
63.5 kg/kmol

× 1028 m−3

For this example, the Fermi energy results in εF = 7.04 eV ≈ 80, 000◦K.
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        Fermi energy 

   ~2kT 

This means that T does not need to be very small (for instance, room temperature, at 300K)
for the electron gas to be very degenerate. In general, at temperatures larger than zero, the
particle distribution is modified just slightly, and will look similar to the figure above.

Of course one could argue that not all particles in the system have the Fermi energy, perhaps
many of them will have energies significantly smaller. To resolve this issue we can calculate
the mean energy per particle ε̄ = E0/N , where E0 is the total energy at zero temperature,
which can be found by direct integration,

E0 =

ˆ εF

εdN =
0

ˆ εF

εdg
0

Using previous expressions, written in terms of the Fermi energy,

3
E0 =

2
Nε

−3/2
F

ˆ εF

0

ε3/2dε =
3
NεF
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Then, the mean energy is,
E0

ε̄ =
N

=
3
εF

5

This value is not too far from the Fermi energy (just 3/5 of it). This means that most
particles have large energies even at zero temperature.

This situation can be better understood with a diagram. First we note that (for closely
spaced energy levels) the F.D. distribution can be written as (when T = 0),

∂N
dN = dε = Nεdε = gεdε therefore Nε = gε

∂ε

Where Nε is the number of particles per unit energy.

It is clear that the electron population grows with the square root of the energy up to the
Fermi level, where it suddenly goes to zero.

Now, we consider also the existence of free electrons outside the metal, these particles may
come from the material surface after being extracted from it.

We define eφ as the work required to extract an electron from the metal surface at the Fermi
level (the work function).
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Free electrons (outside the metal) 

ε  

Nε

εF  

eϕ 

Fermi electrons 
(inside the 
metal) 

Those electrons outside of the metal can be de-
scribed by the classical approximation of a di-
luted gas, and therefore their chemical potential
and partition function (for translational and spin
degrees of freedom) are given by,

No electrons 
here! Q

μext = −kT ln
N

and,

Q = QsQtr = 2

(
2πmkT

3

h2

) /2

V

We note that these expressions are written at
the zero energy level of the free electrons out-
side of the metal. In other words, free electrons
(energetically speaking) are located at an energy

μext + εF + eφ with respect to the zero energy level in the Fermi system. To make the
analysis consistent, we shift the energy levels of the electrons outside of the metal to match
the Fermi level, this is simply done by making μext = −eφ. In this way, the equations above
can be used to write,

kT
eφ kT ln

[
2

(
2πm

=
h2

)3/2
1

n∗
e

]
with n∗

e =
N

V

where n∗
e is the free electron density.

The flux of electrons (number of particles that cross an arbitrary surface, per unit time, per
unit area) is given by,

n∗
e

Γ e c̄
e =

4
with c̄e =

√
8kT

πme

It is important to realize this is the flux of electrons coming from outside of the metal. In
equilibrium, an equal flux must be leaving the metal.

The (bi-directional) electron current density is then given by,

4πeme
je = eΓe =

h3
(kT )2 e−

eφ
kT = 120 × 104T 2e−

eφ
2kT Cm−

and if electrons are withdrawn from the outside, only the emission part remains. This is
known as the Richardson-Dushman thermionic emission law.

Thermionic emission enhanced with a normally applied electric field

To increase the extraction rate from the metal surface, we could apply an electric field E
normal to it. To quantify this situation we compute the work W (potential energy) of the
extracted electron assuming that the only force that binds it to the surface is that of its
image charge inside the material.
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x 

metal 

E 

-e +e 

This energy is formed by two parts: that required
to bring the particle from infinity to a position
x from the metal surface under the image force
plus the one that arises from applying the electric
field,

2

W

ˆ x

= Fdx + x with F =
−e

eE
∞

-x +x 

4πε0(2x)2

therefore,

W =
e2

+ eEx
16πε0x

In terms of the potential, we have,

W
φE = −

e
= − e

16
− Ex

πε0x

We take the derivative of this potential and set it to zero to find the position xm where φE

is maximum,

xm =

√
e

16πε0E

The net effect of E is to decrease the potential barrier by,

φE,max = −
√

eE

4πε0

thus modifying Richardson’s law which we rewrite here as,

4πeme
je = eΓe =

h3
(kT )2 e

− e
kT

“
φ−

q
eE

4πε0

”
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Black Body radiation

We now turn to Bose-Einstein statistics since photons do not obey Pauli’s exclusion principle.
Furthermore, the Lagrange multiplier α identified with the conservation of the total number
of particles in a system will vanish here, since photons are not conserved in number. Energy
on the other hand, is conserved. For example, a photon with energy 2hν can be absorbed by
the material surface while two photons with energy hν can be emitted. If the energy levels
are closely spaced, then we can write the B.E. distribution as,

dg
dN =

e
hv
kT − 1

or
∂N

∂ν
dν =

1

e
hv
kT − 1

∂g

∂ν
dν or Nνdν =

gνdν

e
hv
kT − 1

where Nν and gν are the number of particles and degeneracies per unit frequency, respectively.
The wave equation solution for photons in a “box” of sides Lx, Ly and Lz is proportional
to (sin kxx)(sin kyy)(sin kzz). The solution vanishes at x, y, z = 0, but also must vanish at
every boundary, so we require (consider all sides of the box of length L),

kxLx =nxπ Lx = Ly = Lz = L

kyLy =nyπ and since k2 = k2 2
y + k2

x + k z we have that kL = nπ

k L =n π n2 = n2 + 2
z z z ny + n2

x z

As with the analysis of free electrons in metals, the degeneracy of this system is related to
the number of ways in which the quantum numbers that form n can be arranged to give the
same energy. So we have once more dg = 2(4πn2dn)/8, but this time the “2” comes from the
two possible polarizations of electromagnetic waves. Now we relate n with the frequency,

2π
k =

λ
=

2π

c
ν and since k =

nπ

L
then n =

2L
ν

c

In this way, the degeneracy can be written as dg = (8πV/c3)ν2dν and the number of particles
per unit frequency is therefore,

8πV
Nν =

c3

ν2

e
hν
kT − 1

and the number density (per unit frequency) is nν =
Nν

V

With this, we can calculate Planck’s Formula, which is the energy per unit volume and per
unit frequency,

8πh
uν = hνnν =

c3

ν3

e
hν
kT − 1

which depends only on temperature, a result not predicted by classical mechanics.

The spectral emission (energy flux) is obtained from,

nνc
qν =

4
hν =

2πh

c2

ν3

e
hν
kT − 1

which can be integrated to obtain the overall emission,
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q =

ˆ ∞

0

qνdν =
2πh ∞

c2

ˆ
ν3dν

0 e
hν
kT − 1

and by making x = hν/kT , we can write the emission as,

2πh
q =

c2

(
kT

h

)4 ˆ ∞

0

x3dx

ex − 1

The integral in this expression can be evaluated numerically or by expanding the exponential
in power series, integrating each element and then finding to what value the new integrated
series converges to. This value is π4/15. We finally find the radiative power law,

q = σT 4

where the Stefan-Boltzmann constant σ is given by,

2π5k4

σ =
15c2h3

= 5.67 × 10−8 W

m2K2

9



The Maxwellian distribution function for velocities

From the classical approximation of a diluted gas, we already found that,

N
Ni =

Q
gie

− εi
kT

For closely spaced energy levels,

N
dN =

Q
e−

ε
kT dg

We assume only translational degrees of freedom are relevant,

Q =

(
2πmkT

h2

)3/2

V and ε =
π2

�
2

2m

n2

V 2/3

Once more, the degeneracy is given by the points on the sphere in n-space which have the
same energy, so dg = (4πn2dn)/8, and as the energy is ε = 1

2
mu2, then,

dg = 4πV
(m

h

)3

u2du

Defining f(u) as the number of particles per unit u interval and per unit volume,

dN/V
f(u) =

4πu2du

We then find that,

f(u) = n
( m

2πkT

)3/2

e−
mu2

2kT where n =
N

V

A result that we had previously “discovered” through Kinetic Theory.
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