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Radiation Transport in a Gas (Continued) 

Semi-Thick Plasmas Diffusion Approximation 

An LTE plasma is such that its collisional processes are fast and equilibrate, but coupling 
L 

to radiation is incomplete. Then, as we saw, Ωs · VIν = kν
' ´

0 
and we have black-body radiation as 

well, e.g., full equilibrium. In many cases, plasmas (or other bodies) are not quite so thick 
1(optically); the next approximation is simply Iν r Bν − 
k� 

Ωs · VBν which is still semi-local. 
ν 

This is the diffusion approximation.
 

To calculate energy flux at a point, we need to look at all s
Ω directions 

k'ν(Bν − Iν ). The quantity dε is
 

called the optical depth, and if it is large, then Iν r Bν 

ˆ 

4π 

Iν Ωs dΩsss =

and then V · ssν measure the net local cooling rate by radiation. In the diffusion approxima­
tions,
 

1
1 

1 e
cosθ sinθcosϕ sinθsinϕ sinθdθdϕ41π 4π |VBv |cosθ 

π 

ˆ ˆ

1


%B%νsnΩndΩs − (Ωs · VBν ) Ωs dΩse  e   ssν =
 
k'ν 

 
Only the component along VBν survives → ssν = −VBν 

kν 
2π

ˆ


cos
 2θsinθdθ 

e0    
2 
3 

4π VuνOr, since uν = Bν , ssν = − c 
� . This should be OK near the center of resonant lines. 

c 3 kν 

∞ ´
0 

x hν   
8πhν3/c3 8πhν3 e hν 

uν = , Vuν = kT 2 VT x = 
hν/kT − 1 3e c (ex − 1)2 kT

This is for one frequency. For all frequencies, ss =
 ssν dν. Using 

Then, integrating,
 ss = 
16 (lν )σT 3VT 
3 

,

ˆ ∞ 

4 −x15 1 x e
lν = dx 

4π4 kν 
' (1 − e−x)2 

0 

For kν
' = const., (lv) = 

k
1
� , otherwise it is sensitive to T . 
ν 

Very often plasmas are only thick near the centers of strong absorption lines, and are fairly 
thin in between. Let us examine the nature of kν . 
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Bound-Bound electronic transitions. Line radiation. Broadening. 

The cross-section for absorption of a photon of hν = Em −En by an n-level atom is expressed 
as an integrated value (over frequency) times a shape factor φ(ν): 

∞ 
2e

Qνnm = fnmφ(ν)αnm = 
4f0mec e

ˆ

φ(ν)dν ≡ 1
 

0 
2.65×10−6m2/sec 

where fnm is the absorption oscillator strength (non dimensional, between 0 and 1). The 
oscillator strength is mostly empirical, but it is well known for many transitions. For the H 
atom (and roughly for all alkalis), 

1.96gbb
fnm r   3 (gbb ∼ 1, especially at high m, n)

1 15 3 −n m 2 2

From Q we easily calculate absorption coefficients: ν mn

´

n m

kνnm = NnQνnm 

∞ 

0 
The line shape φ(ν) integrates to unity by definition:
 φ(ν)dν = 1. For low T , low P , only
 

natural line shape. “Lorentzian”, meaning,
 

1 γ/4π 4 
φ(ν) = φ(νc) = 

π (ν − νc)2 + (γ/4π)2 γ 

Em−Enwhere νc = 
h is the line-center frequency and there is a natural line-width at half-

maximum of ΔνN = γ/2π, due to Heisenberg uncertainly in energy of the levels because of 
their finite lifetime:   

γ = Amj + Anj 

j<m j<n 

These γ’s and ΔνN are very small (Δλ = λc 
Δ
νc 

ν ∼ 10−4Å) 

Collisions can be seen as modulations on the atomic oscillators, and they therefore create 
“sidebands”, or broadening. Natural collisions produce Lorentz broadening (or pressure 
broadening) if it is with unlike atoms, and Holtzmark (or resonance) broadening if it is with 
the same species. Same line shapes as natural, but replace γ by, 

γ + 2νoptΓ =  
νopt = npgopQop → (close to (but larger) than cross-section for momentum exchange) 

p 

1 atm, ΔλLorentz r 0.05Å, so much more important than natural. But tiny at nν10−18 − 
−3m . 

Collisions with electrons or other charged particles can also produce broadening (Stark broad­
ening) in plasmas. See Griem (1964); can be very strong at ne > 1022m−3 . The easiest 

2
 

1020

︷︷ ︸



  

broadening to understand is the due to the thermal random motion of the atoms, since there 
is Doppler shifting of the apparent line center depending on line-of-sight velocity. This is 
the Doppler broadening, and depends only on T : 

1 −( ν−νc 2 ΔνD
φ(ν) = √ e δ ) ; δ = √ 

πδ 2 ln 2   
8kT ln 2 T 

ΔνD = νc = 7.16 × 10−7νc
mac2 Ma 

For Na D-lines at 2000◦K, ΔλD ∼ 0.04Å. 

Lorentz and Doppler broadening are very often both important. In the center, Doppler 
dominates, but the center is often black anyway; in the wings, Lorentz dominates. We can 
combine the Lorentz and Doppler profiles into a Voigt profile: 

1 ΔνD
φ(ν) = √ V (a, x) δ = √ 

πδ 2 ln 2 
∞̂

−ya e
2 
dy √ Γ/2π 

V (a, x) = a = ln 2 
π a2 + (x − y)2 ΔνD 
−∞ 

√ ν − νc 
x = 2 ln 2 

ΔνD 

Bound-Free Radiation 

A photon can be absorbed by a bound electron which is below ionization by less that hν. The 
event causes ionization (photo-ionization). Similar physics applies if hν » eVi (essentially 
the free electron Thompson scattering). The cross-section for a hydrogenic atom from a 
principal quantum number m is 

7.91 × 10−22 m Emη 3 

= (Emη < hν)Qνphotoioniz 2 
gbf 

z hν e 
c1 

where Emη is the energy below ionization (threshold for hν). 

Free-Free (Bremsstrahlung) 

An electron bouncing off a heavy particle emits radiation due to its acceleration. Conversely, 
it can absorb a photon while in the vicinity of a heavy particle, which carries away for of the 
momentum. The coefficient of free-free absorption (which gives the absorption rate when 

Iνmultiplied times the electron density, the heavy particle density and 
hν Ω, is dνds

2z gff 
βFree-Free = 180 

ν3
(m 5) (gff r 1) 

ce 

where ce is the electron speed. Integrating for a Maxwellian electron distribution, the effective 
“cross-section” is 

2 ̄nez gff 
= 230 QνFree-Free ν3c̄e 
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Escape factor for Resonant Radiation 

Resonant radiation is radiation from m → ground transitions. Since ground is strongly 
populated, resonant radiation is very likely to reabsorb, at least near the line center. So, 
instead of ..., we probably see .... How much radiation does escape from a give radiating 
volume? Take a slab geometry, assume uniform properties, Iν (0) = 0: 

x−kν ε)Iν = Bν (1 − e ε = 
cos θ 

Call s = kν 
' =“optical depth”. Depends both on distance and on where in the spectrum (kν 

' ). 

Ω 

π/2 π/2 

´
sΩdΩWe are interested in the 1-D “radiant heat flux”, ssν Iν =


ˆ
 ˆ 

0 

s 

(1 − e −(ssν )x (Iν cos θ)2π sin θdθ = Bν 2π (cos θ) ) cos θ sin θdθ= qν = 

0 

1 ˆ
(1 − e − 

u
s 
)uducall u = cos θ qν = 2πBν 

0 

This can be done is therms of exponential integrals. But for an approximate solution, note 

So, make,  
− s u (u < s)

(1 − e u )u r
s (1 > u > s) 

Near,  s 1  
qν r 2πBv

ˆ

udu +


ˆ

sdu


0 s 
2s

= 2πBν + s(1 − 2)
2 

s 
= 2πBν s 1 − (s « 1)

2 
1 

qν r 2πBν

ˆ

udu = πBν (s » 1) 

0 

So,  
qν s(2 − s) s « 1 r

πBν 1 s » 1 

Now, assume line is Pressure broadened, at least in the wings: 

kν (νc) 
= (Δν = full width at 1/2 height)kν 2
 

2ν−νc
1 + 
Δν 

A ν − vc→s = A = Lkν (νc) , δ = 2 
1 + δ2 Δν 

A 
δ = − 1 

s 
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Re-plotting qν /πBν vs. frequency now, 

qν 

πBν 
= 

⎧ ⎨ ⎩ 

A 
1+δ2 

1 

2 − A 
1+δ2 |δ| > 

√ 
A − 1 

|δ| < 
√ 

A − 1 

when s = 1, δ = 
√ 

A − 1 (A > 1 assumed) 
Then, for all frequencies in the line, 

∞ ∞ 
√ 

A−1 ∞  ˆ

qν dν =
 

Δν
 
2


ˆ

Δν
 

gν dδ = πBν 2 
2


ˆ
 ˆ

s(2 − s)dδ
1dδ +
q =
 

√
0 −∞ 0 A−1 

In general, 

δ = 
A 
s 
− 1 dδ = 

−A/s2ds 

2
 

A 
s − 1 

∞ 0 1 
A/s2  ˆ
 ˆ
 ˆ


2 − s ds
 √ √
 
2 A − s s
 

(2s − s
 2)dδ =
 −
 (2s − s
 2) ds = A
 
2 A − 1√ 

1 0sA−1 

√ √ 
For cases of interest A = zkν (νc) » 1, while s here is in (0-1), so A − s r A 

∞ 1 √ √ 
√ 2 1ˆ


(2 − s
 2)dδ r 
A
 √
 

2 A


ˆ

ds A
 5 A
3/2√
(2 − s)
 = 4 s − s
 =
 

2 3 0s
√ 
0A−1 

√ 
A−1 √ √ 

0

´

√5 8π 
q r πBvΔν + 1 A q r Bν Δν Lkν (0) (Black Center) 

3 3 

For comparison, if the line were all of it “thin”, we would have, 

1 

A − 1
Also,
 dδ
 r A
=
 

ˆ

1 − e − s 

2πBν udu r 2πBν sqν = u 

0 e 
=s everywhere 

∞ ∞ ∞ 

q =

ˆ


qν dν =
 
Δν
 
2


ˆ

Δν
 

qν dδ = 2πBν
2


ˆ

Integrating over line,
 sdδ
 

´
0 −∞ −∞ 

∞ 

−∞ 

AAnd since s = 
1+δ2 , sdδ = πA
 q = π2Lkνc ΔνBν (thin line). 
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In terms of density and the total absorption cross-section QT OT = αnmdv, we have 

line 

2 1 
kν = NnQν = NnQTOT 2πΔν 

2 ν−νc1 + 
Δν/2 

2 
kν (0) = NnQTOT

πΔν 
2 

so, Lkν (0) = LNnQTOT
πΔν 

so, (q)Thin = 2πBν LNnQTOT 

If this were a black body, we would have in Δν a radiation, 

1 ˆ 
(qν )Thin 

(qν )BB = 2πBν (1 − e −∞)udu = πBν ; = 2s. At ν = νc, s = A = kνc L 
(qν )BB 

0 

qνthinSo = 2Lkνc « 1 
qνBB 

We can also define the “escape factor”, or fraction of light emitted which does escape. For 
the “blackened-center” line, 

8
3 
π Bν Δν Lkν(0) 8 1 

β = = « 1 
π2Lkν0 ΔνBν 3π Lkνc 

Net radiant heat flux (to the right) in slab of thickness L, at a distance x from the left 
boundary. 

8π 
q = qR − qL qR = Bν Δν xkν03 

8π 
qL = Bν Δν (L − x)kν03 

√8π √ 
q(x) = Bν Δν kν0 ( x − L − x)

3 

Radiant heat loss per unit volume:
 
dq 4π 1 1 

= Bν Δν kν0 √ + √ 
dx 3 x L − x 

For an almost “transparent” medium: ⎫ 
qR(x) = π2xkv0 ΔνBν ⎬
 

q(x) = π2(2x − l)kν0 ΔνBν ; 
dq 

= 2π2kν0 ΔνBν

dx 

qL(x) = π2(1 − x)kν0 ΔνBν 
⎭ 

Local Escape Factor:   
dq 

2 1 1 
β(x) = 

dq
dx = + (Must be limited to <1 near x = 0 and x = L)

3π kν0 x kν0 (L − x)dx Thin 
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