
�Effects of an Inhomogeneous Magnetic Field (E = 0)

For some purposes the motion of the “guiding” centers can be taken as a good approximation
of that of the particles. But it must be recognized that during the particle’s Larmor gyra-

� �tions, it “samples” regions where B or E may be different from what they are at the guiding
center (GC). For the magnetic field, the effects are important, and they are to be studied here.

We decompose formally the particle’s velocity �v into a “Guiding Center” part �vGC and a
�Larmor part �vL. In turn, the GC velocity has a component �v along B, plus a component||

�(a “drift”) perpendicular to B:
�v = �vGC + �vL

(1)
�vGC = �v + �v|| D

The Larmor velocity is defined by,

d�vL
m �= q�vL

dt
× BGC

(2)
vL = 0||

�where B has been explicitly taken to be at the particle’s Guiding Center.

We next assume the plasma is magnetized with respect to the particles in question, so that
the Larmor radius is “small”:

�RL << Distance over which B changes appreciably (3)

We also assume (to be verified later) that the drift velocities are small compared to those
involved in Larmor motion:

vD << vL (4)

�Because of (3), B(�r) (�r being the instantaneous location of the particle, measured from the
�GC) can be expanded to first order about BGC :

�B(�r) ∼ �= BGC + (�r · ∇ �)B (5)

The full equation of motion is then,

d(�v + �v
m

‖ D + �vL) �= q(�v + �v
dt

‖ D + �vL) × (BCG + (�r · ∇ �))B (6)

× � �Of the terms on the right, clearly �v BGC = 0 (parallel vectors). The term �vD × (�r · ∇)B||
is of second order (product of small terms), and will be neglected.

The term q(�vL × �BGC) cancels the md�vL/dt on the left, according to (2).

This leaves,

d�v||
dt

+
d�vD

dt
=

q � � ��v (�r )B + �vD BGC + �vL (�r )B (7)
m

[
|| × · ∇ × × · ∇

]
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�If the B line through the GC has a radius of curvature Rc,

� then,
BGC d�v||
�b

Rc �n

dt
=

dv||
dt

�b +
v2
||
�n (8)

Rc

� �where b and �n are unit vectors tangent to B and along the
�inner normal to the B line, respectively.

�We can now separate out the components of Eq.(7) along B

(‖ �) and perpendicular to B (⊥)

�Along B:
dv||
dt

=
q ��
m

[
vL × (�r · ∇)B

]
(9)

||
�Perpendicular to B:

v2
||

Rc

�n +
d�vD

dt
=

q � � ��v (�r )B + �vD BGC + [�vL (�r B)] (10)
m

[
|| × · ∇ × × · ∇ ⊥

]
The next step is to average these equations over each “quasi-orbit” about the GC (“quasi”,
because, in an inhomogeneous field the Larmor orbits may not quite close on themselves -

�we ignore that). During each such orbit, �v , �vD and BGC are regarded as constant, but �r||
and �vL vary cyclically. Because of this, any term where �r and �vL appear linearly will average
to zero, but care must be taken when they appear in pairs. In particular,〈

�v|| × (�r · ∇ �)B
〉

= 0 (11)
Larmor

Note: �If we had retained E in the formulation (even with some inhomogeneity), this averag-
� �ing step would have eliminated any first order ∇E (no ∇E drift terms exist).

�n

�b

To see what the averaging results are for the other terms, we
now re-write (9) and (10) in a local Cartesian coordinate frame

z as shown in the figure. The y direction completes a right-
handed set. The corresponding unit vector is the bi-normal

x y

unit vector
�bn = �b × �n (12)

Writing out Eq. (9):

dvz

dt
=

q

m

〈
vLx

(
x
∂By ∂By

+ y
∂x ∂y

)
−vLy

(
x
∂Bx

∂x
+ y

∂Bx

∂y

)〉
Larmor

(13)

Projecting Eq. (10) along the normal (x) direction,

v2
z

Rc

+
dvDx

dt
=

q

m

{
vDyBz +

〈
vLy

(
x
∂Bz ∂Bz

+ y
∂x ∂y

)〉
Larmor

}
(14)
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Projecting Eq. (10) along the bi-normal (y),

dvDy q
=

dt

∂B
v

m

{
− DxBz −

〈
vLx

(
z

x
∂Bz

+ y
∂x

(15)
dy

)〉
Larmor

}

The Larmor motion is shown in the figure for a positive q. If
the Larmor radius is rL, we have

y
x = rLcos ωct

(16)
y = −rLsin ωct

�B
xωct vLx = −ωcrLsin ωct

(17)
v = ω r cos ω t

�r Ly − c L c

where ω
�v c = qB

L
is the gyro frequency. Therefore, when doing

m

the averaging,

〈 〉
2
〈

2
〉 1

xvLy = −ωcrL cos ωct =
L L

− ωcr
2

2 L〈
yvLy

〉
= ωcr

2
L 〈sin ωct cos ωctL

〉L = 0

〈xvLx〉L = −ω 2
crL 〈sin ωct cos ωct〉L = 0

2
〈

2
〉 1〈yvLx〉L = ωcrL sin ωct =

L

(18)

ωcr
2

2 L

Notice the occurrence of the group q
m

1ωcr
2

2 L. From q
m

= ωc

B
and ωcrL = v⊥, this group is,

q

m

1

2
ωcr

2
L =

1v2
2 ⊥
B

=
μ

(19)
m

where μ is the magnetic moment μ = 1
2
mv2

⊥/B. We now have from (13), (14), and (15),

dvDx

dt
= − v2

z v2

+ ωcvD
R y

c

− ⊥
2B

∂Bz

∂x
(a)

dvDy v2

=
dt

−ωcvDx − ⊥
2B

∂Bz

∂y
(b)

dvDz

dt
=

v2
⊥

2B

(
∂Bx

∂x
+

∂By v
=

∂y

)
2

− ⊥
2B

∂Bz

(20)

(c)
∂z

Notice we have used ∇ · �B = 0 in the last equation. Also, since B2 = B2 + B2 + B2
x y z and

Bx = By = 0 due to the choice of axes, B = Bz. Furthermore, taking gradients,

2B∇B = 2Bx∇Bx + 2By∇By + 2Bz∇Bz = 2B∇Bz

and so ∇Bz = ∇B. Hence the subscript z will be omitted from Bz from here on.
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These averaged equations contain rich information. Let us first consider separately (20a)
and (20b), i.e. the ⊥ part. Following the procedure used before, we define a complex vD

vector,
vD = vDx + ivDy (21)

and combine the equations as (a) + i(b):

d

dt

(
vDx + vDy

)
= − v2

‖
Rc

+ ωc

(
vDy − ivDx

)
− v2

⊥
2B

∇⊥B

dvD

dt
+ iωcvD = − v2

‖
Rc

− v2
⊥

2B
∇⊥B

(22)

where ∇⊥ = ∂
∂x

�i + ∂
∂y

�j. The homogeneous solution of (22) is the Larmor motion, which we
disregard once again, since we are after the drifts. These drifts are given by the particular
solution,

vD = vD,part = i
v2
‖

ωcRc

+ i
v2
⊥

2Bωc

∇⊥B

vD = i
mv2

‖
qBRc

+ i
mv2

⊥
2qB2

∇⊥B (23)

In vector terms,

�vD =
mv2

‖
qBRc

�bn +
mv2

⊥
2qB2

�b ×∇⊥B (24)

Of these, the first term is the Inertia Drift due to the centrifugal force on a particle which
is sliding along a curved �B line. One mechanistic way to view this is the following: The

centrifugal force is −mv2
||

Rc
�n. This can be countered by the magnetic force due to a drift along

�bn, chosen such that,
mv2

||
Rc

�n = q�vDI
× �B = qvDI

( �bn) × B�b

and, from (12), ( �bn) ×�b = �n, leaving vDI
=

mv2
||

qBRc
, as in (24).
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�b ×∇B

∇B

The second term in (24) is the
so-called ∇B - Drift (Notice that
�b × ∇⊥B = �b × ∇B). This will
be later shown to be also related
to �B - line curvature, since, due to
∇ · �B = 0, the magnitude of B can
only vary if the lines are curved.
This ∇B - drift is seen to be per-
pendicular to �b and the ∇B and
directed to the left of �B. A physi-
cal picture is in shown in the figure.
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To show how ∇B is related to line curvature, we start from Frenet’s first formula (illustrated
in the figure):

�n �= (b
Rc

· ∇ �)b (25)

�n

�b

Rc
�n

�b + d�b = �b + (�b · ∇)�bds
ds

dθ and so,

�(b · ∇ �)b

and use the vector identity �B× (∇× �B) = ∇
(

B2 �(
2

)
− B ·∇ �)B.

�
Dividing this by B, and remembering B

B
= �b, ∇

(
B2

,
2

)
= B∇B

�(b · ∇ �)B = ∇B −�b × �(∇× B)

B�= ( · ∇)

(
�

b
B

)
=

1

B
[∇B −�b × (∇× �B)] −

�B

B2
�b · ∇B

which is also �n , according to (25). We now cross-multiply
Rc

� �
times b, to from b×�n

Rc
= ( �bn) :

Rc

�bn �b
=

×∇B

Rc B
− 1 �b

B
×

(
�b × (∇× B)

)
︸ ︷︷ ︸

�b �b · (∇× B) −∇× �B = −(∇× �B)⊥

or
�b ×∇B

B
=

�bn �(∇× B)

Rc

− ⊥
B

and substituting this into the expression for (�vD)∇B (from (24)),

mv2

(�vD)∇B = ⊥
2qB2

�b ×∇B =
mv2

⊥
2qB

(
�bn �(∇× B)

Rc

− ⊥
(26)

B

)

In the absence of appreciable net current ⊥ � �to B, one would have ∇× B = 0, and
⊥

�(�vD) B would be strictly proportional to B-line curvature (1/R∇ c), and

(
directed

)
along the

binormal vector just as the inertia drift. We should therefore group these terms together.
Starting at Eq. (24),

m
�vD =

(
v2 + 1
|| 2

v2
⊥
)

qBRc

�bn − mv2
⊥ �(

2qB2
∇× B) (27)⊥

Parallel Drifts

To complete the picture, we now return to Eq. (20c) and investigate the parallel drift effects.
We had,

dv
m

‖
dt

= −mv2
⊥

2B

∂B
(28)

∂z
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dv
In steady state, m ||

dt
= mv||

dv||
dz

=
d( 1mv2

2 )|| . Since the total kinetic energy is conserved (no
dz

� �E forces, and B forces perpendicular to �v),

d
(

1
2
mv2

||
)

dz
= −d

(
1
2
mv2

⊥
)

dz

Substituting in (28),

d

(
1
2
mv2

⊥

)
dz

=

(
1 1
mv2

2 ⊥

)
B

dB

dz

or
d

dz

(
1
2
mv2

⊥ =
B

)
0 (29)

1

The quantity μ = 2
mv2

⊥
B

(the magnetic moment, μ, according to our previous definition)

is seen to be invariant �for a particle which moves along a B-line while executing Larmor
�rotations perpendicular to B. This is sometimes called the second adiabatic invariant (“adi-

�abatic” refers to the absence of energy input, as from a time-varying B field).

There are now two constants of the motion:

E =
1 1
mv2 +

2 || 2
mv2

⊥ (30)

and

μ =
1mv2
2 ⊥

B
(31)

Eliminating the perpendicular energy 1mv2 = μB, we obtain
2 ⊥

1
mv2 = E

2 || − μB (32)

Showing that the parallel energy decreases as the particle moves into a region with a stronger
B field. At the same time, of course, the perpendicular energy increases: the varying field
has the effect of transferring energy from (⊥) to (||) or viceversa.

If B increases enough, a particle of given energy and magnetic moment can be stopped in
its parallel motion, and reflected. Suppose the particle has a parallel velocity v||0 when the
field is B0. It will be reflected at turning point T if 1

2
mv2

||0 + μB0 = μBT :

BT = B0 +
1mv2
2 ‖0

μ
= B0 +

v2
‖0 B0

v2
⊥0

or
BT v

= 1 +
B0

(
‖

2

v⊥

)
(33)

0
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Defining the “pitch angle” θ = atan
(
v /v⊥ ||

)
,

BT 1
= 1 + cotθ2

B 0 =
0

(34)
sin2θ0

v⊥

 v�

B0 Bmax

vθ ⊥0
0

v �0

Any particle for which sin θ0 >
√

B0/Bmax will be reflected at some BT given by (34). But

those with small enough pitch angle (sin θ0 <
√

B0/Bmax) will not, and will escape through
the magnetic bottleneck. If a “Magnetic Bottle” is used to confine plasma between solenoids,
this “leakage”of low-pitch particles creates a peculiar distribution, with particles within a
“loss-cone” in pitch being mostly absent.
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