
Boltzmann’s H-theorem 
Consider one single species, with no space gradients, no external forces and constant volume, 
so that,    

∂f 
f 'f '= 1 − ff1 gσdΩd3 w1

∂t  
and define H = n(ln f) = f ln fd3w. The function f(ww ) may be evolving in time due to 
collisions, so let us calculate the rate of change of H. 

N  n=  V         ∂H dH ∂f ∂ ∂f d3 d3 = = (1 + ln f) w =  f d3 w + ln f w 
∂t dt ∂t  ∂t ∂t 

     
∂H 

f 'f ' w1d
3 = ln f 1 − ff1 gσdΩd3 w ⊗ 

∂t 
Ω w w1 

Now, we integrate over both ww and ww1, so they are interchangeable      
∂H 

= ln f1 f1
' f ' − f1f gσdΩd3wd3 w1 ⊗⊗ 

∂t 

since g and σ do not change under this interchange; only ln f1 is different. We can then 
write,    

∂H 1 ∂H 1 
= (⊗ + ⊗⊗) = = ln(ff1)(f

'f1 
' − ff1)gσdΩd3wd3 w1 ⊕ 

∂t 2 ∂t 2

Again, since each collision has one and only one inverse collision, and we are summing over 
all possible collisions, primed and unprimed variables can be interchanged (this does not 
affect g or σ either: 

=d3wd3w1       
'∂H 

= 
1 

ln(f 'f1
' )(ff1 − f 'f1

' )gσdΩ d3 w 'd3 w1 ⊕⊕ 
∂t 2

Ω  w� � w��1 w w1 

we then have,    
∂H 1 1 f 'f ' 

= (⊕ + ⊕⊕) = ln 1 (ff1 − f 'f ') gσdΩd3wd3 w1 ≤ 0 
∂t 2 4 ff1

1

Ω w w1     
≤0 

Hence we have found that H can only decrease in time: an irreversible macroscopic behavior 
built up from reversible microscopic interactions. The explanation, for this paradox lies in 
the “molecular chaos” assumption, i.e., in each collision all impact parameters are equally 
likely because they do not interact (the collisions) with each other. This cannot be strictly 
true, but the net effect appears to cancel out as the number of particles increases. We suspect 
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that the irreversible quantity H must be connected with the entropy of the system, and will 
prove this later. 

Relationship between H and Entropy S 

We had defined H = n(ln f) = f ln fd3w, and when f is equilibrated,   
3/2 3/2 22m
 m
 mw
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= n e
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H = n ln n − 2 
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3 
H = n ln n − 

2πkT 2
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The natural variables for entropy Stot are energy E = N 3
2 kT , number of molecules N and 

volume V = N
n . Changing H to these variables, and using Htot = HV (H was per unit 

volume),
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m N 3 

Htot = N ln −4 π V E 2
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We have no closed form for Stot, but its partial derivatives can be calculated from, 

dE = T dStot − P dV + µdN 

where µ is the chemical potential. 

We then find, 

dE P µ 1 N µ
dStot = + dV − dN = dE + k dV − dN 

T T T T V T 

and so: 

∂Stot 1 ∂Stot kN ∂Stot µ 
= ; = = nk ; = − 

∂E T ∂V V ∂N TN,V N,E E,V 

Now, from the definition of Htot above, 

∂Htot 3 N 1 
= − = − 

∂E 2 E kT N,V
 

∂Htot N
 
= − = −n 

∂V VN,E     
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Comparing the first two derivatives of Stot and Htot, we see that 

S = −kH + f(N)
 

Without invoking the Third Law of Thermodynamics (the entropy tends to zero at T = 0), 
which cannot apply directly to a gas, because condensation and crystallization must occur 
as T → 0, the function of f(N) in indeterminate. When comparing changes of entropy of a 
fixed amount of gas (fixed N) this does not matter, and we can provisionally identify, 

S = −kH
 

which does have the proper evolution during approach to equilibrium.
 

The derivatives (∂H , ∂S ) can be used to evaluate the chemical potential of the substance,
 
∂N ∂N 

but now the function f(N) does matter, and it must be obtained from other data. We do 
not pursue this here. 
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