Systems Theoretic Process Analysis (STPA)

Systems approach to safety engineering (STAMP)

- Accidents are more than a chain of events, they involve complex dynamic processes.
- Treat accidents as a control problem, not just a failure problem
- Prevent accidents by enforcing constraints on component behavior and interactions
- Captures more causes of accidents:
 - Component failure accidents
 - Unsafe interactions among components
 - Complex human, software behavior
 - Design errors

STAMP Model

- Flawed requirements
 - esp. software-related accidents

STAMP: basic control loop

- Controllers use a **process model** to determine control actions
 - Accidents often occur when the process model is incorrect
- A good model of both software and human behavior in accidents
- Four types of **unsafe control actions**:
 - 1) Control commands required for safety are not given
 - 2) Unsafe ones are given
 - 3) Potentially safe commands but given too early, too late
 - 4) Control action stops too soon or applied too long

Using control theory

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.

Change Requests Performance Audits

Using control theory

Incidents Change Requests Performance Audits

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.

Using control theory

Incidents Change Requests Performance Audits

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.

7

STAMP and STPA

STAMP Model

Accidents are caused by inadequate control

STAMP and STPA

STAMP and STPA

STPA Hazard Analysis

STPA

(System-Theoretic Process Analysis)

- Identify accidents and hazards
- Draw the control structure
- Step 1: Identify unsafe control actions
- Step 2: Identify causal scenarios

Can capture requirements flaws, software errors, human errors

(Leveson, 2012)

STPA Hazard

Analysis

STAMP Model

- Accident (Loss)
 - An undesired or unplanned event that results in a loss, including loss of human life or human injury, property damage, environmental pollution, mission loss, etc.
- Hazard
 - A system state or set of conditions that, together with a particular set of worst-case environment conditions, will lead to an accident (loss).

- System Accident (Loss)
 - An undesired or unplanned event that results in a loss, including loss of human life or human injury, property damage, environmental pollution, mission loss, etc.
 - May involve environmental factors outside our control
- System Hazard
 - A system state or set of conditions that, together with a particular set of worst-case environment conditions, will lead to an accident (loss).
 - Something we can <u>control</u> in the design

System Accident	System Hazard
People die from exposure to toxic chemicals	Toxic chemicals from the plant are in the atmosphere

- System Accident (Loss)
 - An undesired or unplanned event that results in a loss, including loss of human life or human injury, property damage, environmental pollution, mission loss, etc.
 - May involve environmental factors outside our control
- System Hazard
 - A system state or set of conditions that, together with a particular set of worst-case environment conditions, will lead to an accident (loss).
 - Something we can <u>control</u> in the design

System Accident	System Hazard
People die from exposure to toxic chemicals	Toxic chemicals from the plant are in the atmosphere
People die from radiation sickness	Nuclear power plant radioactive materials are not contained
Vehicle collides with another vehicle	Vehicles do not maintain safe distance from each other
People die from food poisoning	Food products for sale contain pathogens

- System Accident (Loss)
 - An undesired or unplanned event that results in a loss, including loss of human life or human injury, property damage, environmental pollution, mission loss, etc.

Broad view of safety

"Accident" is anything that is unacceptable, that must be prevented.

Not limited to loss of life or human injury!

People die from radiation sickness	Nuclear power plant radioactive materials are not contained	
Vehicle collides with another vehicle	Vehicles do not maintain safe distance from each other	
People die from food poisoning	Food products for sale contain pathogens	

System Safety Constraints

System Hazard	System Safety Constraint
Toxic chemicals from the plant are in the atmosphere	Toxic plant chemicals must not be released into the atmosphere
Nuclear power plant radioactive materials are not contained	Radioactive materials must note be released
Vehicles do not maintain safe distance from each other	Vehicles must always maintain safe distances from each other
Food products for sale contain pathogens	Food products with pathogens must not be sold

Additional hazards / constraints can be found in ESW p355

STPA

(System-Theoretic Process Analysis)

- Identify accidents and hazards
- Draw the control structure
- Step 1: Identify unsafe control actions
- Step 2: Identify causal scenarios

Control Structure Examples

Proton Therapy Machine High-level Control Structure

Gantry

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Beam path and

control elements

© Paul Scherrer Institute. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Proton Therapy Machine High-level Control Structure

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Figure 11 - High-level functional description of the PROSCAN facility (D0) Courtesy of MIT. Used with permission.

Proton Therapy Machine Control Structure

Figure 13 - Zooming into the Treatment Delivery group (D1)

Courtesy of MIT. Used with permission.

Adaptive Cruise Control

© Audi. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Image from: http://www.audi.com/etc/medialib/ngw/efficiency/video_assets/fallback_videos.Par.0002.Image.jpg

Example: ACC – BCM Control Loop

Courtesy of Qi D. Van Eikema Hommes. Used with permission.

Chemical Plant

An image of the explosion at the Bayer chemical plant in Institute, West Virginia removed due to copyright restrictions.

Chemical Plant

Citichem Safety Control Structure

U.S. pharmaceutical safety control structure

An image of the prescription drug Vioxx removed due to copyright restrictions.

Image from: http://www.kleantreatmentcenter.com/wpcontent/uploads/2012/07/vioxx.jpeg

Ballistic Missile Defense System

Image from:

STPA

(System-Theoretic Process Analysis)

STPA Step 1: Unsafe Control Actions (UCA)

STPA Step 1: Unsafe Control Actions (UCA)

	Not providing causes hazard	Providing causes hazard	Incorrect Timing/ Order	Stopped Too Soon / Applied too long
(Control Action)				

Step 1: Identify Unsafe Control Actions

(a more rigorous approach)

Control Action	Process Model Variable 1	Process Model Variable 2	Process Model Variable 3	Hazardous?

STPA

(System-Theoretic Process Analysis)

STPA Step 2: Identify Control Flaws

STPA Examples

Chemical Reactor

Chemical Reactor Design

- Catalyst flows into reactor
- Chemical reaction generates heat
- Water and condenser provide cooling

What are the accidents, system hazards, system safety constraints?

STPA

(System-Theoretic Process Analysis)

- Identify accidents and hazards
 - Draw the control structure
 - Step 1: Identify unsafe control actions
 - Step 2: Identify causal scenarios

Chemical Reactor Design

- Catalyst flows into reactor
- Chemical reaction generates heat
- Water and condenser provide cooling

Create Control Structure

STPA Analysis

- High-level (simple)
 Control Structure
 - What are the main parts?

STPA Analysis

- High-level (simple)
 Control Structure
 - What commands are sent?

STPA Analysis

- High-level (simple)
 Control Structure
 - What feedback is received?

Chemical Reactor Design

STPA

(System-Theoretic Process Analysis)

Chemical Reactor: Unsafe Control Actions

?

Control Structure:

Close Water Valve

Four parts of an unsafe control action

- Source Controller: the controller that can provide the control action
- Type: whether the control action was provided or not provided
- Control Action: the controller's command that was provided / missing
- Context: conditions for the hazard to occur
 - (system or environmental state in which command is provided)

Chemical Reactor: Unsafe Control Actions (UCA)

	Not providing causes hazard	Providing causes hazard	Incorrect Timing/ Order	Stopped Too Soon / Applied too long
Close Water Valve		Computer closes water valve while catalyst open	Computer closes water valve before catalyst closes	
Open Water Valve				
Open Catalyst Valve				
Close Catalyst Valve				

Chemical Reactor: Unsafe Control Actions (UCA)

	Not providing causes hazard	Providing causes hazard	Incorrect Timing/ Order	Stopped Too Soon / Applied too long
Close Water Valve		Computer closes water valve while catalyst open	Computer closes water valve before catalyst closes	
Open Water Valve	Computer does not open water valve when catalyst open		Computer opens water valve more than X seconds after open catalyst	Computer stops opening water valve before it is fully opened
Open Catalyst Valve		Computer opens catalyst valve when water valve not open	Computer opens catalyst more than X seconds before open water	
Close Catalyst Valve	Computer does not close catalyst when water closed		Computer closes catalyst more than X seconds after close water	Computer stops closing catalyst before it is fully closed

Safety Constraints

Unsafe Control Action	Safety Constraint
Computer does not open water valve when catalyst valve open	Computer must open water valve whenever catalyst valve is open
Computer opens water valve more than X seconds after catalyst valve open	?
Computer closes water valve while catalyst valve open	?
Computer closes water valve before catalyst valve closes	?
Computer opens catalyst valve when water valve not open	?
Etc.	Etc.

Safety Constraints

Unsafe Control Action	Safety Constraint
Computer does not open water valve when catalyst valve open	Computer must open water valve whenever catalyst valve is open
Computer opens water valve more than X seconds after catalyst valve open	Computer must open water valve within X seconds of catalyst valve open
Computer closes water valve while catalyst valve open	Computer must not close water valve while catalyst valve open
Computer closes water valve before catalyst valve closes	Computer must not close water valve before catalyst valve closes
Computer opens catalyst valve when water valve not open	Computer must not open catalyst valve when water valve not open
Etc.	Etc.

Traceability

- Always provide traceability information between UCAs and the hazards they cause.
 - Same for Safety Constraints and the hazards that result if violated.
- Two ways:
 - Create one UCA table (or safety constraint list) per hazard, label each table with the hazard
 - Create one UCA table for all hazards, include traceability info at the end of each UCA
 - E.g. Computer closes water valve while catalyst open [H-1]

STPA

(System-Theoretic Process Analysis)

Step 2: Potential causes of UCAs

Step 2: Potential control actions not followed

Chemical Reactor: Real accident

MIT OpenCourseWare https://ocw.mit.edu

16.63J / ESD.03J System Safety Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.