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MOTIVATION 
In the 1960’s Robert W. Farquhar, with his thesis advisor Professor John Breakwell, 
tackled a NASA problem involving a spacecraft orbiting about the Earth-Moon L2 
Lagrange point.  The goal was a communications satellite to service the backside of the 
Moon, with an uninterrupted view of both the Earth and the far side of the Moon.  Even 
though they were not the first to tackle orbits at the Lagrange points, their work has 
provided a foundation for modern missions about these “stationary” points, and has 
motivated the use of these points for current and future missions. 

Currently, one of NASA’s long term objectives for manned space travel is to expand 
mission capability from Low Earth Orbit to anywhere in the solar system8.  A major 
stepping stone to exploring the solar system is developing space observatories at the 
Lagrangian Points.  The Lagrangian Points have been used in the past for systems such as 
the International Sun-Earth Explorer-3 (ISEE-3) and Solar and Heliospheric Observatory 
Satellite (SOHO). The ISEE-3 spacecraft observed the Earth from a halo orbit at the 
Sun-Earth L1 point, while SOHO observed the Sun from the same point. From the L1 
point, SOHO has the unique ability to maintain continuous line-of-site to the Sun (no 
eclipse), while also being continually able to return data to the Earth.  Also several future 
missions plan on using these strategic points for telescopes, moon communication 
satellites, and observatories.  For example, a mission has been proposed to place space 
telescopes at each of Jupiter’s Lagrange points L4 and L5 for cooperative, ultra-long-
baseline astronomical observations2. Understanding how these unique locations can be 
exploited for space exploration becomes a necessary task.   

PROBLEM STATEMENT 
As future space missions plan to utilize Lagrange Point Orbits, describe the potential 
orbits about the stable and unstable Lagrange points. 



APPROACH 
In order to answer this question, background information must be provided on the nature 
of the Lagrange Points.  A literature search will supplement SMAD3 and yield a 
description of the Lagrange Points, their stability, potential orbits around them, and 
further motivations for Lagrange Point missions.  Analysis based on the literature study 
will allow the creation of software tools to predict and visualize the locations of the 
Lagrange Points for a given two-body system, as well as the determination of maneuver 
requirements to maintain Lagrange Point Orbits.   

SOLUTION 

Perspective 
Joseph Louis Lagrange (1736-1813) showed that, given two large bodies (i.e. the Earth 
and the Moon) in circular orbits about each other, there exist 5 points where an object 
could remain stationary with respect to the two major bodies, as shown in Figure 1.  
Lagrange further showed that the points will exist for any pair of orbiting bodies as long 
as the mass ratio between them is larger than 25.   While some of these “Lagrange 
Points” were shown to be unstable, a spacecraft could potentially orbit any of them with 
minimal control effort. The points are also known as the “equilibrium” or “libration” 
points, because at any one of these points, the gravitational attraction of the two bodies 
on a spacecraft and the spacecraft’s centrifugal acceleration are balanced.  Generally, 
when analyzing the Lagrangian points, the origin of the reference frame is at the 
barycenter of the two bodies and rotates with an angular velocity equivalent to the period 
of the co-orbiting bodies. (For the Earth-Moon system, the barycenter is located inside 
the Earth at 4,700 km toward the moon4 and the angular velocity is approximately the 
period of the Moon about the Earth ~ 1 month.)  All five of these strategic points exist in 
the plane of motion. 
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Figure 1.  Locations of the Lagrange Points for an arbitrary 2-body system 

The three points located on the line which connects the two bodies (L1, L2, L3) are 
referred to as the collinear points, and are determined from Lagrange’s famous Quintic 
Equation, presented by Richard Battin5 as: 

5 4 3(m + m2 )χ + (3m + 2m2 )χ + (3m + m2 )χ1 1 1  (Eq. 1) 
2− (m + 3m3 )χ − (2m + 3m3 )χ − (m + m3 ) = 02 2 2 

where m1, m2 and m3 represent the masses of the three bodies (large body, small body, 
and spacecraft). The mass of the spacecraft is assumed to be zero when solving the 
equation. Depending on the location of the spacecraft there are 3 different solutions for 
the Quintic Equation (when m1=0, m2=0, or m3=0)  Though not clear at first, the term χ is 
used to calculate the three different collinear points as shown in Figure 2. 
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Figure 2. Graphical interpretation of the Quintic Equation 

These points can also be looked at as a balance of forces such that objects in these 
locations have a period equivalent to the co-orbiting bodies.  To illustrate, if the smaller 
body was not present, then a spacecraft located at these particular points would have an 
orbital period either greater than or less than the co-orbiting period.  However, due to the 
presence of the smaller body, gravitational forces act on the objects in these regions, such 
that their orbital period either increases or decreases to be equivalent to the smaller body. 
This produces the effect that (in the relative, rotating frame) objects located at these 
points remain stationary with respect to the two bodies4. 
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The L4 and L5 points are referred to as the Triangular Points.  This is because they are at 
the points of an equilateral triangle, where the base of the triangle is the line between the 
two bodies, as shown in Figure 1.  Without the presence of the smaller body, the net 
gravitational force is directed toward the center of the Earth.  However, the gravitational 
force due to the smaller body causes the total gravitational force to point toward the 
barycenter of the system and produce a period of revolution equivalent to the co-orbiting 
bodies4. 

Stability and Langrage Orbits 
The three collinear points, L1, L2, and L3, are considered unstable and are like “saddles” 
in the gravitational potential, while the two triangular points are stable.  In the plots of the 
gravitational potential below, the large peak represents the gravity potential near the large 
body, and the smaller peak represents the gravity potential near the small body.  Notice 
the “saddle” where the L1 point is located.  The origin of these plots is explained in the 
Analysis section, below. 

Figure 3. 3D plot of gravitational potential in the rotating reference frame 
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Figure 4. 2D contour plot of gravitational potential in the rotating reference frame 

It has been proven in theory and in application that there are periodic orbits about the 
unstable Lagrange points (no special treatment is required for the stable L4 and L5 
points, once there).  Since there is no closed form solution for the equations of these 
orbits, computational and numerical analysis are used to determine the trajectories.  Also, 
these orbits can not be described by specific orbital parameters (orbital elements) as is 
common for typical orbits, but there are “families” of orbits that exist.  “As early as 1963, 
Boudas computed 19 families of three-dimensional periodic orbits in the circular 
restricted three-body problem.”6  Though there are many names and different methods of 
organization, there are 3 main categories in present literature (note that not all orbits can 
be classified into one of these types, however these are the most practical and well-
studied orbits): 

1.	 Lyapunov Orbit 
The Lyapunov Orbit is a periodic orbit in the plane of motion of the primary 
bodies. 
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2.	 Lissajous Orbit 
The Lissajous Orbit is a combination of a planar and vertical components in the 
periodic orbit (see Figure 6) 

3.	 Halo Orbit: 
The Halo Orbit is a special case of Lissajous orbits where the in-plane and out-of-
plane frequencies are equal11,6. 

Equations and Analysis 
Much work has been done to analyze the motion of satellites in the vicinity of the 
Lagrange points.  As mentioned above, Robert W. Farquhar wrote his PhD thesis on this 
topic under a NASA grant, and this technical report1 has become the bibliographical root 
of almost every Lagrange Point paper since 1969 (as it is the root of this one).  In the first 
section of his work, Farquhar derives the equations of motion for the circular restricted 
three-body problem (CR3BP), which can be used to plot both Lagrange Point orbits and 
the transfer orbits required to get there.  This formulation is characterized by a rotating 
coordinate system with an origin at the center of mass of the two large bodies (the 
barycenter).  The x-axis of the coordinate system is along the line connecting the primary 
bodies, the z-axis in the direction of the angular momentum vector of the system, and the 
y-axis completing the right handed set.  The coordinate frame thus rotates with the 
angular velocity of the system.  This arrangement is illustrated in Figure 1.  

Several other assumptions are important to the circular restricted three-body equations, 
most of them evidenced by the name itself.  First, the orbit of the small body (for 
example, the Moon in the Earth-Moon system) is assumed to be circular.  This is a 
reasonable assumption for most systems of interest, including Earth-Moon9 (em=0.055), 
Sun-Earth7 (ee=0.0167), and Sun-Jupiter7 (ej=0.0482).  The term restricted refers to the 
assumption that the third body does not affect the orbits of the two primary bodies.  That 
is, the third body is massless.  Another assumption is that the universe is strictly limited 
to the three bodies under consideration, so there are no other gravitational influences in 
the system.  For example, it is assumed that the Sun does not affect the orbit of a 
spacecraft about an Earth-Moon Lagrange Point.  Finally, it is assumed that there are no 
other unmodeled accelerations in the system, such as solar radiation pressure.  All of 
these assumptions, while seemingly very restrictive, allow the formulation of the 
equations of motion that give a representative first-order picture of orbits about the 
Lagrange Points.  While not suitable for a real spacecraft trajectory, the orbits that can be 
generated with the CR3BP equations are useful from an initial design perspective. 

There are many equivalent formulations of the CR3BP equations as presented by 
different authors.  One of the most readable forms is given by Paul D. Merritt9 and is 
presented here (Farquhar’s equations are similar, using different notation): 

&& = 2 y& + x − 
(1− µ)(x + µ) µ[x − (1− µ)]	    (Eq. 2) x	 −3	 3r1 r2 
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y&& = − 2x& + y − 
(1− µ ) y 

−
µ y (Eq.  3)3 3r1 r2 

z&& = − 
(1− µ )z 

−
µ z (Eq.  4)3 3r1 r2 

In the above equations, x, y, and z represent the position of the satellite with respect to the 
barycenter, where r1 is the distance from the large body to the satellite, r2 is the distance 
from the small body to the satellite, and µ is the nondimensional center of mass: 

µ =
M 2 (Eq.  5)

M 1 + M 2 

Here M1 is the larger body. It is important to note also that, in the normalized unit system 
of these equations, the angular rate of the two bodies about the barycenter has been set to 
unity, resulting in a unit of time (TU) that is the inverse of the mean angular rate.  That is: 

&θ = 1 (Eq.  6)  

1 P1TU = = s (Eq.  7)
n 2π 

Where n is the mean angular rate, or P is the period of the masses about the barycenter.  
The equations above (Eq. 2-4) are a system of three coupled nonlinear differential 
equations that can be used to model the motion of a spacecraft on orbits around the 
Lagrange points.  No closed-form solution exists to these equations, even with the 
simplifying assumptions listed above.  Given the proper initial conditions, however, a 
designer can use a numerical integration routine to plot a reference trajectory for initial 
analysis.  Such a tool has been created for this report, and is presented in the following 
section. 

Unfortunately, deriving the necessary initial conditions is no trivial task.  A simple 
example can be formed using the stable L4 and L5 points.  Since the location of these 
points is known precisely, and no critical initial velocity is required, a sample spacecraft 
can be inserted into the L4 or L5 point and observed for an extended time.  Using the tool 
mentioned above, this experiment was performed, and the results are as expected.  When 
inserted precisely at the L4 or L5 point with no initial velocity, the spacecraft has no 
relative motion at all for extended periods.  The result is a plot with a single point at the 
L4 and L5 points, and so is not presented here.  A more interesting example is formed 
when the spacecraft is not put exactly at the Lagrange point (or is put there with nonzero 
relative velocity), and is allowed to obey the mechanics of the CR3BP for an extended 
period.  The result of this experiment is shown in Figure 5.  Compare the resulting pattern 
to Figures 4 and, and then the CR3BP equations may be used with confidence. 
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Figure 5.  Perturbed and bounded motion at the L4 and L5 Lagrange Points 

Research has indicated several methods that have been used in the past to generate initial 
conditions (and even full trajectories), including sophisticated software tools developed 
by industry or educational institutions.  One such software tool is called Generator and 
was created by Purdue University, as described by Hamilton, et. al10. Generator uses 
ephemeris data to model perturbations not included in the CR3BP model, including 
eccentricities, external gravitational influences, and radiation pressure.  Another method, 
presented clearly by Wang Sang Koon11 of Caltech, derives analytic periodic solutions to 
linearized versions of the CR3BP.  These equations can be used as a first approximation 
to the desired halo orbit, for use in more advanced propagation and correction algorithms 
for Lagrange Point orbits.  These periodic solutions for the linearized problem are as 
follows: 

t +x − = A cos( φ λ ) (Eq.  8)x

t +y = kA sin( φ λ ) (Eq.  9)x

t +z = A sin( ψ ν ) (Eq.  10)z
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Here Ax, Ay=kAx, and Az are amplitudes that characterize the orbit.  The parameters λ and 
ν are the frequencies of the orbit in the respective axes, and φ and ψ are phase angles.  If λ 
and ν are unequal, the result is a Lissajous orbit; if they are equal, the result is a halo 
orbit. A sample plot generated by these equations is shown in Figure 6.  It should be 
noted that the origin of this plot is at the L1 point based on the formulation of Eqs. 8-10. 

Figure 6.  3D plot of a Lissajous orbit about L1, using solution from linearized CR3BP 

In addition to the equations of motion for the restricted three body problem, Farquhar 
derives in Chapter 1 of his thesis the equation for the Jacobian constant and the surfaces 
of constant velocity.  Using energy methods and drawing upon the equations for the three 
body problem, the following equation can be derived: 

V 2 µ
= (x 2 + y 2 ) + 

(1− µ) 
+ − C     (Eq. 11) 

r2r1 

Here V is the magnitude of the relative velocity of the satellite in the rotating frame, x and 
y are the position of the satellite in the same frame, C is the Jacobian constant, and µ is as 
defined above in Eq. 5.  Of course this equation only describes motion in the orbital 
plane.  By setting the relative velocity to zero, a contour map can be created that indicates 
lines of constant C. This map is the potential field of the given system as viewed in the 
rotating coordinate frame, as presented in Figures 3 and 4.  
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Orbit Maintenance Requirements 
Initially there was an expectation that a software tool could and would be created, that 
would estimate maneuver requirements for Lagrange point orbits.  Knowing initially that 
orbits about the Lagrange Points were unstable, and periodic maintenance was thus 
required (regardless of perturbing forces), it was expected that a simple algorithm could 
be found or derived to give the designer a first cut at the ∆V budget for his mission.  The 
result of research in this area was surprising, and the immediate consequence is that the 
designer does not need a software tool to make a basic ∆V estimate for the mission.  The 
secondary consequence is that mission designers need quite sophisticated software tools 
to obtain a high-fidelity model of the sizes and frequencies of the orbit maintenance 
maneuvers. An explanation for both of these consequences follows, beginning however 
with the methods that exist for calculating the requirements. 

Regardless of the perturbing forces involved, orbits about the collinear Lagrange Points 
are unstable and thus require periodic maintenance.  The three body problem, however, 
even in its simplest and most restricted form, still results in a system of three coupled 
nonlinear differential equations.  Farquhar himself discussed possible station-keeping 
strategies in his original work1, and later advanced this effort in at least one more paper 
published in 198012. Farquhar’s original work dealt with continuous thrust techniques 
(and indeed even applied solar sails to this application), while many of the techniques to 
follow dealt in discrete burns suitable for chemical propulsion devices.  Hamilton10 used 
a discrete linear-quadratic-regulator framework to control the orbit of spacecraft at the 
Sun-Earth L2 point, with applications for formation flying at that location.  Gomez, et. 
al.13, wrote a paper detailing two methods of control, called the Target Point strategy and 
the Floquet Mode approach.  The Target Point strategy computes maneuvers designed to 
keep the spacecraft near a reference orbit, using a cost function that incorporates required 
control energy and predicted deviation from the nominal (based on the calculated 
maneuvers). The Floquet Mode approach is a sophisticated system based on the 
linearized equations of the CR3BP described above (Eq. 8-10).  Serban, Koon, et. al., in a 
much more recent paper14, have used optimal control to generate halo orbit maneuver 
correction strategies, with additional emphasis on transfer trajectories to halo orbits.   

Unfortunately, none of these methods has a simple implementation that could be quickly 
and neatly coded into a useful design tool for satellite engineers.  Fortunately, the result 
of all this effort in control strategies yields a consistent and valuable generalization: 
orbits around the Lagrange Points can be maintained for years using a very small amount 
of ∆V, and with relatively infrequent maneuvers [see 13, 15, 16].  A conservative rule-of-
thumb for designers would be an estimate of 12 maneuvers per year, with a total ∆V of 
only 20 m/s per year.  Examples have been found with as few as 6 maneuvers, and ∆V 
requirements only 4 m/s per year. 

Software Description 
A number of software tools were written in the course of the preceding analysis.  All 
functions were written in Matlab, and their dependencies and flow (where applicable) are 
indicated in Figure 7.  The following text is a brief description of each function and its 
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intention, and then the commented code follows as an Appendix.  The code is 
documented such that, with the help of this description, a user could immediately begin 
using the tools to generate useful visualizations. 

) 

M1, M2, R) M1, M2, R) 

(

cr3bp_lin(M1, 
M2, R, phi, psi, 

Az) 

find_l(M1, M2) 

host 

Initial 
Conditions (xo1) 

Constants (M1, 
M2, R, dt) 

ode45(‘cr3bp’

find_L(M1, M2) 

plot(x,y), plot3(x,y,z) 

tconvert(dt, icconvert(xo1, 

fzero 'quintic') 

zeroV(M1, M2) lplot(M1, M2, R) 

lambda, nu, Ax, 

Figure 7.  Dependencies and flow diagram for analysis functions 

The primary code, host.m, is a host program that calls all of the others.  It is here that the 
user can specify the desired parameters such as: the mass of the primary bodies (M1, 
M2), the distance between them (R), the run time of the simulation (dt), the initial 
conditions of the orbits (xo1), and the parameters of the linearized equations of the three 
body problem (phi, psi, lambda, nu, Ax, Az). 

Because all of the equations from the previous section are formulated in normalized units, 
the conversion programs tconvert.m and icconvert.m were created to convert standard 
units of seconds, meters, and meters/second into TU, DU, and DU/TU, respective.  These 
functions can be called in-line with the other functions, so the conversion is transparent to 
the user. 
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The function find_l.m is useful for several purposes.  First, as seen in the diagram, it can 
be used to create or supplement the initial conditions for the equations of motion.  For 
example, this function was used to locate the L4 and L5 points (and then these points 
were offset a bit to make the plot interesting) for the initial conditions to the plots in 
Figure 5.  Secondly, the output from the function is used to create the 2D visualization of 
the Lagrange Points for any system, as shown in Figure 1.  Function find_l.m works by 
numerically solving Lagrange’s quintic equation for the three collinear points, and then 
calculating the remaining two points with simple trigonometry.   

The function cr3bp.m is describes the three coupled nonlinear differential equations of 
motion for the CR3BP.  The function is called using one of Matlab’s built-in numerical 
integrators, such as ode45.m, to determine the position and velocity of the spacecraft in 
time. The output from cr3bp.m can be plotted in two or three dimensions using Matlab’s 
built-in plot commands.  Again, a two-dimensional example of this function’s capability 
is shown in Figure 5. 

The function lplot.m, as mentioned above, is used to create the two-dimensional 
visualization of the Lagrange points in any system, as shown in Figure 1.  The generated 
plot has its origin at the barycenter of the two primary bodies. 

The function zerov.m implements Eq. 11 and creates both two- and three-dimensional 
representations of the potential field of the two central bodies, in the rotating coordinate 
frame. 

Finally, the function cr3bp_lin.m is an implementation of Eqs. 8-10, and generates two- 
and three-dimensional plots of the periodic solution to the linearized CR3BP.  The 
function requires many inputs that describe the amplitude and frequency of the desired 
orbit in all three axes. 
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APPENDIX 

Software Code 

host.m 

global M1 % must be global to work in ode45 call 

global M2 

global M3 


M1=5.9736e24; %kg, earth 

M2=7.35e22; %kg, moon 

R=3.84e8; %m, earth-moon 

% M1=1.9891e30; % kg, sun 

% M2=5.9736e24; % kg, earth 

% R=1.50e11; % m, earth-sun 

dt=1800*24*60*60; % s, simulation time 


points=find_l(M1, M2); 


xo1 = [.5 -sqrt(3)/2 0 0 0 0]'; % IC's for oscillation at L5/L4 


% If t needs to be converted, use 'tconvert' in the form "tconvert(dt, M1, M2, R)" 

% If the IC's need conversion, use 'icconvert' in the form "icconvert(xo1, M1, M2, R)" 

% Ex: [t y]=ode45('cr3bp', [0 tconvert(dt, M1, M2, R)], icconvert(xo1, M1, M2, R)); 


[t y]=ode45('cr3bp', [0 tconvert(dt, M1, M2, R)], xo1); % here xo1 is already 

barycentered 


%%%%%% make 2D plot of the CR3BP %%%%%% 

figure 

plot(y(:,1),y(:,2)) 

xlabel('x') 

ylabel('y') 

grid on 

axis equal 

%%%%%% /make 2D plot of the CR3BP %%%%%% 


%%%%%% make 3D plot of the CR3BP %%%%%% 

figure 

plot3(y(:,1),y(:,2),y(:,3)) 

grid on 

xlabel('x') 

ylabel('y') 

zlabel('z') 

axis equal 

%%%%%% /make 3D plot of the CR3BP %%%%%% 


%%%%%% make plots of the surfaces of zero velocity %%%%% 

zerov(M1, M2, 6) 

%%%%%% /make plots of the surfaces of zero velocity %%%%% 


%%%%%% make the 2D plot of L-point locations %%%%%% 

lplot(M1, M2) 

%%%%%% /make the 2D plot of L-point locations %%%%%% 


%%%%% plot the periodic solutions to linearized CR3BP %%%%% 


% Here, because of the example data available, this example is called 

% for the sun-earth system 


Ax = 206e6; 

Az = 110e6; 

cr3bp_lin(1.9891e30, 5.9736e24, 1.50e11, Ax, Az, 0, 0, 2.086, 2.015); 

%%%%% plot the periodic solutions to linearized CR3BP %%%%% 
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tconvert.m 

function tout=tconvert(t, Mb, Ms, r) 


% tout is the converted time in units of TU for the given system 

% t is the time to convert from, in units of seconds 

% Mb is large body 

% Ms is the small body 

% r is the distance between them 


G = 6.67e-11; % N m^2 / kg^2 


P = sqrt( (4*pi*pi*r*r*r) / (G*(Mb+Ms)) ); % s, Period of small body's rotation about 

barycenter 


tout = (2 * pi * t) / P; % the time in TU 


icconvert.m 

function ic_out=icconvert(x, Mb, Ms, r) 


% ic_out is the converted initial state in units of DU and DU/TU for the given system 

% x is the state to convert from, in units of meters and meters/second 

% Mb is large body in kg 

% Ms is the small body in kg 

% r is the distance between them in meters 


G = 6.67e-11; % N m^2 / kg^2 


P = sqrt( (4*pi*pi*r*r*r) / (G*(Mb+Ms)) ); % s, Period of small body's rotation about 

barycenter 


TU = P / (2 * pi); % 1 TU, in seconds 


ic_out(1:3,:) = x(1:3,:) / r; % initial conditions converted to DU 

ic_out(4:6,:) = x(4:6,:) * TU / r; % initial conditions converted to DU/TU 
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find_l.m 

function l_points=find_l(Ml, Ms) 


% Function "l_points" find the 5 lagrange points for a given system, in 

% normalized units (assuming the distance between the bodies is 1) 

% 

% l_points is returned as a length 5 vector of the lagrange points, in order 

% Lagrange points will be referenced from the barycenter, + towards small body 

% All z-components are assumed to be zero, planar system 

% Ml is large body in kg 

% Ms is the small body in kg 


global Ma % must be global to get these variables to 'quintic' through fzero 

global Mb 

global Mc 


r = 1; % the distance from the big body to small body in normalized units 


%%%%%%%%% Solve for L1 %%%%%%%%%%% 

Ma=Ml; 

Mb=0; 

Mc=Ms; 


l_points(1,1)=r/(fzero('quintic', .1) + 1) - Ms/(Ml+Ms); 

l_points(1,2)=0; 

%%%%%%%%% /Solve for L1 %%%%%%%%%%% 


%%%%%%%%% Solve for L2 %%%%%%%%%%% 

Ma=Ml; 

Mb=Ms; 

Mc=0; 


l_points(2,1)=r*fzero('quintic', .1) + 1 - Ms/(Ml+Ms); 

l_points(2,2)=0; 

%%%%%%%%% /Solve for L2 %%%%%%%%%%% 


%%%%%%%%% Solve for L1 %%%%%%%%%%% 

Ma=0; 

Mb=Ml; 

Mc=Ms; 


l_points(3,1)=-r/fzero('quintic', .1) - Ms/(Ml+Ms); 

l_points(3,2)=0; 

%%%%%%%%% /Solve for L3 %%%%%%%%%%% 


%%%%%%%%% Solve for L4 & L5 %%%%%%%%%%% 

l_points(4,:)= [.5-(Ms/(Ml+Ms)) sqrt(3)/2]; 

l_points(5,:)= [.5-(Ms/(Ml+Ms)) -sqrt(3)/2]; 


% these are simply the corners of the equilateral triangle where one 

% side is the distance between the two primary bodies 


%%%%%%%%% /Solve for L4 & L5 %%%%%%%%%%% 
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cr3bp.m 

function xdot = cr3bp(t, x); 


% function cr3bp implements the CR3BP equations of motion 


% x is the state vector [r v], [6x1] 


global M1; 

global M2; 


MU = M2 / (M1 + M2); 


r_eb_mag = 1 * MU; % distance from Big body to Barycenter, in normalized 

distance units (MDU) 

r_mb_mag = 1 - r_eb_mag; % distance from Small body to Barycenter (MDU) 


r_eb = r_eb_mag * [ 1 0 0]'; % vector from Big body to Barycenter (MDU) 

r_mb = r_mb_mag * [-1 0 0]'; % vector from Small to Barycenter (MDU) 


xdot(1:3,1) = x(4:6,1); 

rho = x(1:3,1); % barycenter to satellite 

v = x(4:6,1); 


r1 = r_eb + rho; % Big body to satellite 

r2 = r_mb + rho; % Small body to satellite 


r1_mag = norm(r1); 

r1_3 = r1_mag * r1_mag * r1_mag; 


r2_mag = norm(r2); 

r2_3 = r2_mag * r2_mag * r2_mag; 


xdd = 2 * v(2) + rho(1) - ((1-MU)*(rho(1)+MU))/r1_3 - MU*(rho(1)-(1-MU))/r2_3; 

ydd = -2 * v(1) + rho(2) - ((1-MU)*(rho(2) ))/r1_3 - MU*(rho(2) )/r2_3; 
zdd = - ((1-MU)*(rho(3) ))/r1_3 - MU*(rho(3) )/r2_3; 

xdot(4:6,1) = [xdd ydd zdd]'; 

lplot.m 

function lplot(Ml, Ms) 


r_sun = .1; % scaled diameter of the large body (i.e. sun), not to scale 

r_earth = .05; % scaled diameter of the small body (i.e. earth), not to scale 


points=find_l(Ml, Ms); 


MU = Ms / (Ml + Ms); % large body to barycenter in normalized distance units 


figure 

hold on 

theta = 0:pi/32:2*pi; 

plot(r_sun*sin(theta)-MU, r_sun*cos(theta),'m') 

plot(r_earth*sin(theta)+1-MU, r_earth*cos(theta),'g') 

legend('Major Body','Minor Body') 

plot(sin(theta)-MU, cos(theta),'b') 

x_axis=-1.5:1.5; 

y_axis=-1:1; 

plot(x_axis, zeros(1,length(x_axis)),'k','linewidth',2) 

plot(zeros(1,length(y_axis)),y_axis,'k') 

plot(points(:,1),points(:,2),'rx','markersize',12) 


text(-1.4, -1.05, 'Massive bodies not drawn to scale') 


axis equal 

grid on 
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zerov.m 

function zerov(Ml, Ms, max_height) 


% function zerov plots the 2D and 3D representations of the 

% potential near Ml and Ms in the rotating coordinate frame 


% Ml is large body in kg 

% Ms is the small body in kg 

% "max_height" is where the top of the 3D plot is cut off, otherwise 

% there are scaling issues and the plot is not useful 


clear c 


% M1 = 5.97e24; % kg, Mass of Earth 

% M2 = 7.35e22; % kg, Mass of Moon 


MU = Ms / (Ml + Ms); 

r_eb_mag = 1 * MU; % distance from Earth to Barycenter, in Moon distance units 
(MDU) 
r_mb_mag = 1 - r_eb_mag; % distance from Moon to Barycenter (MDU) 

r_eb = r_eb_mag * [ 1 0 0]'; % vector from Earth to Barycenter (MDU) 

r_mb = r_mb_mag * [-1 0 0]'; % vector from Moon to Barycenter (MDU) 


% x=-3:.02:3; 

% y=-3:.02:3; 

x=-1.5:.05:1.5; % the x-plot range 

y=-1.5:.05:1.5; % the y-plot range 


for i=1:length(x) 

for j=1:length(y) 


rho=[x(i) y(j) 0]'; 


r1 = r_eb + rho; % big body to satellite 

r1_mag = norm(r1); 

r2 = r_mb + rho; % small body to satellite 

r2_mag = norm(r2); 


c(j,i) = x(i)^2 + y(j)^2 + 2*(1-MU)/r1_mag + 2*MU/r2_mag; % zero v_rel equation 

if c(j,i)>max_height 


c(j,i)=max_height; 

end 


end 

end 


% The following manipulations create meaningful contour lines on the 

% contour plot 

csize=size(c); 

data=reshape(c,[1 csize(1)*csize(2)]); 

[numbinned centers]=hist(data,18); 

low_bin=centers(1); 

min_el=min(data); 

max_el=max(data); 

tmp=log(centers)/log(15); 

contourlist=[sort([tmp+(min_el-tmp(1)) centers(find(centers>max(tmp+(min_el-

tmp(1)))))])]; 

% End manipulations 


figure 

[a b]=contour(x,y,c,contourlist); 

axis equal 

xlabel('x'); 

ylabel('y'); 


figure 

[a b]=contour3(x,y,c,contourlist); 

axis equal 

xlabel('x'); 

ylabel('y'); 

zlabel('c'); 


figure 
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surf(x,y,c); 

xlabel('x'); 

ylabel('y'); 

zlabel('c'); 


cr3bp_lin.m 

function cr3bp_lin(Ml, Ms, R, Ax, Az, phi, psi, lambda, nu) 


% function cr3bp_lin plots the periodic orbits based on the 

% linearized CR3BP equations 


% Ml is large body in kg 

% Ms is the small body in kg 

% R is the distance between them in meters 

% phi and psi are phase angles of the orbit 

% lambda and nu are frequencies of the orbit (radians) 

% Ax and Az are the amplitudes of the orbit (in meters) 


MU = Ms / (Ml + Ms); % large body to barycenter in normalized distance units 
% or unitless center of mass 

points=find_l(Ml, Ms); % normalized distance 

gamma=1-points(1,1)-MU; % normalized distance units 

c2 = (gamma^-3)*(MU + ((-1)^2)*(1-MU)*(gamma/(1-gamma))^3); % unitless 


k = (lambda^2 + 1 + 2*c2)/(2*lambda); 


Ax = Ax/R; 

Ay = (k*Ax); 

Az = Az/R; 


t=0:.1:80; 


x = -Ax * cos(lambda.*t + phi); % the solutions of the linearized eqs 

y = Ay * sin(lambda.*t + phi); 

z = Az * sin(nu .*t + psi); 

xd = lambda * Ax * sin(lambda.*t + phi); % and their derivatives, if required 

yd = lambda * Ay * cos(lambda.*t + phi); 

zd = nu * Az * cos(nu .*t + psi); 


figure 

plot3(x*R/1000, y*R/1000, z*R/1000) 

grid on 

xlabel('x (km)') 

ylabel('y (km)') 

zlabel('z (km)') 

axis equal 


quintic.m 

function x=quintic(chi) 


% Lagrange's quintic equation, solved by fzero to find L1, L2, L3 


global Ma 

global Mb 

global Mc 


x=(Ma + Mb)*chi^5 + (3*Ma + 2*Mb)*chi^4 + (3*Ma + Mb)*chi^3 - (Mb + 3*Mc)*chi^2 - (2*Mb + 

3*Mc)*chi - (Mb + Mc); 
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