
PROBLEM SET #3 


TO: PROF. DAVID MILLER, PROF. JOHN KEESEE, AND MS. MARILYN GOOD 

FROM: NAMES WITHHELD 

SUBJECT: PROBLEM SET #3 (SPACE ENVIRONMENT AND POWER SUBSYSTEMS) 

DATE: 12/11/2003 

MOTIVATION 

The Engineering Test Satellite VI (ETS-VI) was launched by the H-II Launch Vehicle Flight No. 2 in 
August 1994, but it was not placed into the prescribed geostationary orbit because of an apogee engine 
trouble. Later, the satellite was placed into a geostationary-transfer orbit across the Van Allen Belt made up 
of high energy protons and electrons trapped along field lines of the Earth. As a result, the ETS-VI had 
been exposed to a huge amount of space radiation and the solar cell decreased power output and the satellite 
ceased to operate in 1996. 

Degradation of solar array performance due to radiation within space environment is an important effect to 
consider when designing the power subsystem.  Although not all spacecraft experience the fate of the ETS
VI in the Van Allen Belt, the solar arrays of a typical satellite in Low Earth Orbit loses 15% of its power 
producing capability in 5 years time.  Furthermore, since many space missions are considering electric 
propulsion as its means for orbit transfer, the degradation effect on solar arrays will increase as more time is 
spent within the Van Allen radiation belts.  As solar arrays are a critical complimentary subsystem to the 
power-intensive electric propulsion subsystem, it is important to provide a detailed characterization of the 
degradation effect on the solar arrays over the mission life.   

PROBLEM STATEMENT 

Characterize the degradation of a solar array given orbit position as a function of time. Conduct a literature 
search to better characterize the effect of radiation on solar arrays, beyond what has been presented in Space 
Mission Analysis and Design by Wertz and Larson.  Develop a MATLAB module that characterizes the radiation 
dosage as a function of time.  Also develop a method for computing degradation of the solar array based on 
the radiation dosage. To simply the problem, model the Van Allen Belts as a function of altitude and latitude 
only. In characterizing the radiation dose, model just the Van Allen Belts, but discuss how to incorporate 
other sources of radiation, such as solar particle events and galactic cosmic rays, into the module.  



APPROACH 

The following block diagram depicts the inputs and outputs of our model: 
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RADIATION ENVIRONMENT 

Introduction 

A spacecraft around Earth orbit is irradiated by many types of radiations, including trapped radiation, solar 
particle events, and Galactic cosmic rays. In particular, the trapped radiation of the Van Allen radiation belts 
is problematic to Earth orbiting satellites’ solar arrays performance.  An accurate model of the radiation from 
the Van Allen radiation belts can help in prediction of solar cell degradation during the design stage. In this 
section we describe a Matlab module that models the radiation due to trapped proton and electron particles 
around the Earth’s magnetic field, i.e. Van Allen radiation belt. 

Earth’s Magnetic Field 

Earth’s magnetic field can be model using the International Association of Geomagnetism and Astronomy 
(IAGA) International Geomagnetic Reference Field (IGRF) model for given time (in UT) and location. More 
specifically, we use Tsyganenko's GEOPACK Library that has been written translated into a Matlab code 
from a Fortran code. 

Using the GEOPACK Library, the magnetic field can be model for October 15, 2003, 18:00:00 UT at -71° 
longitude in Geocentric Geographic Coordinate system as shown in Figures 1.1 and 1.2. 
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The power output of solar cells is severely reduced by radiation damage.  The solar arrays of a typical satellite 
in Low Earth Orbit loses 15% of its power producing capability in 5 years time.  Predicting the degradation 
of the solar cells over the course of a mission can be crucial to determining the length of the mission.  Power 
subsystems of spacecraft are designed to meet end-of-life requirements, and as such, it is necessary to predict 
power loss of solar cells over the mission life.  There is limited existing experimental data of solar cell 
degradation as a function of electron and proton fluence.  Therefore, a method for degradation predicition 
that relies on limited experimental data is desirable. 

One approach to correlating power loss to radiation consists of multiplying the calculated nonionizing energy 
loss (NIEL)2  and the fluence (Summers, 1994).  The power losses associated with proton irradiation is a 
special case because of the linear dependance of the proton damage coefficient on the NIEL for all solar 
cells.  Electron irradiation, however, does not vary linearly with NIEL and a more general approach is 
required.  This method of characterizing the effects of radiation on solar cells in terms of absorbed 
displacement damage dose enables the prediction of power losses in the space environment with limited 
experimental data. 

In the following sections, we demonstate the aforementioned method (Summers, 1994) for Gallium Arsenide 
solar cells.  However, our modules can also be applied to Si (21eV), Si (12.9eV), and INP and solar cells for 
which experimental data of proton and electron fluence exists. 

Protons 

Figure 2.1 shows experimentally measured curves of the normalized power degradation for GaAs/Ge solar 
cells.  Power degradation for the GaAs/Ge solar cell after exposure to protons for energy levels of 0.05, 0.1, 
0.3, 1, 2.5, and 10 MeV are displayed. 

Figure 2.1  Power degradation for GaAs/Ge solar cell after exposure to protons, for different energies and 
fluences (Sharps, 2003). 

As shown in Equation 2.1, a characteristic curve for proton damage (Figure 2.2) can then be obtained by 
multiplying the proton fluence, Φ(E), by the NIEL, S(E), for a given energy level, E. (A table of NIEL 
values for protons and electrons in Si, GaAs and INP is included in the appendix).   

2 The NIEL is the rate at which an incident ion loses energy to displacement damage (Summers, 1991). 
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In this way, the data for all energy levels can be represented by a single characteric function. 

Figure 2.2  Characteristic curve for proton damage. 

The characteristic curve is generated to model the power loss due to proton irradiation. The plot is fitted to 
experimental data (product of NIEL and fluence) and is defined by Equation 2.2.  In Equation 2.2, Pmax/Po 

represents the normalized beginning-of-life power after exposure to a given dose of protons.  D represents 
the dose in units of MeV/g.  C and Dx are constants fitted to the experimental data, equal to .1295 and 
1.295× 109 respectively (Summers, 1994). 
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Equation 2.2 can be modified to compute the dose required to reduce the power to any given level: 
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The primary advantage of this method is that the dose remains constant for any positive ion of energy.  The 
plot provides the absorbed does for a given reduction of power.  Dividing the dose by the NIEL for a energy 
value of our choice (not only energy values for which experimental data exists), we can output the fluence. 
This enables an entire group of damage coefficients to be obtained from a single characteristic curve. 

Electrons 

Figure 2.3 shows experimentally measured curves of the normalized power degradation for GaAs/Ge solar 
cells.  Power degradation for the GaAs/Ge solar cell after exposure to electrons for energy levels of 0.6, 1, 2, 
and 12 MeV are displayed. 

Figure 2.3  Power Degradation for GaAs/Ge solar cell after exposure to electrons, for different energies and 
fluences (Sharps, 2003). 

As before, the damage energy deposited by electrons of a given energy is calculated using Equation 2.1. 
However, the electron case proves more complicated than the proton case because damage coefficients no 
longer vary linearly with the NIEL.  Instead of generating a characteristic curve such as the one in Figure 2.2, 
a range of data is produced (Figure 2.4). 
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Figure 2.4 Power loss of GaAs/Ge cells from electron irradiation plotted against absorbed dose (Summers, 
1994). 

To compensate for the non-linear variation of damage coefficients and NIEL, it is necessary to define a 
effective dose of electron energy, Deff. This value is typically chosen as 1.0 MeV (Ansbaugh, 1991). The value 
of n in Equation 2.4 must be experimentally determined. 
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By defining this effective absorbed dose of 1.0 MeV of electron energy, a characteristic curve can be 
generated (Figure 2.5). 

Figure 2.5 Power loss of GaAs/Ge cells from electron irradiation plotted against effective 1.0 MeV electron 
absorbed dose. (Summers, 1994). 
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Figure 2.5 is important not only for displaying the ability of the Equation 2.4 to return a characteristic curve, 
but also for displaying the relationship between degradation caused by electrons and protons. Manipulation 
of these plots will eventually enable correlation between proton and electron effects. 

To demonstrate the applicability of this method of utilizing effective dose of electron energy, Deff, for other 
solar cell types, the characteristic curve of Si solar cells is calculated.  Deff is again set to 1.0 MeV and n is 
found to be 2 for silicon from experimental data (Summers, 1994).  Using Equations 2.1, 2.2, and 2.4, the 
electron absorbed dose is then plotted for various electron energies.  As expected, the data coverges on a 
single line which can be defined by Equation 2.1 with C and Dx as constants fitted to plot, equal to 0.06593 
and 1.841×108 respectively (Figure 2.6). 

Figure 2.6  Characteristic curve for electron damage. 

As in the proton case, the electron characteristic curve enables the fluence of electrons of any energy to be 
calculated for a given power loss.  This can be useful in the solar cell selection process. For example, 
degradation of various solar cell types can be compared by calculation of the fluence of 1 MeV electrons. 
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Proton and Electron Effects Applied to Radiation Model 
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SUGGESTIONS FOR FUTURE WORK 

There are additional factors that should be included in future studies on solar cell performance in complex 
space environments. 

In the solar cell degradation model, it is important to note that only cell degradation as a result of irradiation 
with a unidirectional beam of particles is considered.  Solar cells in a real space environment will be subject to 
isotropic bombardments.  Another simplifying assumption made in the solar cell degradation model was that 
low energy protons (those without enough energy to reach the active region of the cell) need not be 
considered.  By choosing a suitbale lower limit used on the integral for the dose calculation, low energy 
protons are neglected.  Although low energy protons can usually be neglected due to the logarithmic 
dependence of the maximum power on dose, it is something future work can consider. 

CONCLUSIONS 

Characterizing the effects of radiation on solar cells in terms of absorbed displacement damage dose as 
opposed to particle fluence reduces the experimental data needed to predict power losses in the space 
environment. 
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APPENDIX A: RADIATION ENVIRONMENT MODULE 

function load_AP8AE8_data() 

% LOAD_AP8AE8_DATA() loads AP8MAX, AP8MIN, AE8MAX, and AE8MIN data.  

% .type  Model map type 

% .flux_log_increments_per_decade Increments per decadeof logarithmic flux 

% 

% .epoch   Epoch of model 

% .energy_scale_factor    Scale factor for energy = E(map)/(E/MeV)

%                 = 6400 (AE-8), 100 (AP-8) 

% .L_scale_factor              Scale factor for L 

% = 2100 (AE-8), 2048 (AP-8)

% .B_B0_scale_factor           scale factor for B/B0

% = 1024 (AE-8), 2048 (AP-8)

% .flux_log_scale_factor     Scale factor for logarithm of fluxes

% = 1024 (AE,AP-8) 

% .number_of_elements             Number of elements in map 

% = 13548 (AE8MAX), 13168 (AE8MIN), 

% 6509 (AP8MAX), 6688 (AP8MIN)

% .map Data 


global RADIATION_DB;
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RADIATION_DB = struct('AP8MAX',[],'AP8MIN',[],'AE8MAX',[],'AE8MIN',[]);

file = {'ap8max.asc' 'ap8min.asc' 'ae8max.asc' 'ae8min.asc'}; 

data = {'AP8MAX' 'AP8MIN' 'AE8MAX' 'AE8MIN'}; 


for i = 1:length(data)
     x = textread(file{4},'%6n','delimiter',' '); 
    RADIATION_DB = setfield(RADIATION_DB,data{i},struct('type',x(1),... 


           'flux_log_increments_per_decade',x(2),... 

           'epoch',x(3),... 

           'energy_scale_factor',x(4),... 

           'L_scale_factor',x(5),... 

           'B_B0_scale_factor',x(6),... 

           'flux_log_scale_factor',x(7),... 

           'number_of_elements',x(8),... 

           'map',x(9:length(x)))); 


end 

function [proton_flux,electron_flux] = compute_irradiation_flux... 
(year,month,day,hour,minute,second,... 
 radius,theta,phi,... 
 proton_energy,electron_energy,solar_max) 

% [PROTON_FLUX,ELECTRON_FLUX] = 

% COMPUTE_IRRADIATION_FLUX(YEAR,MONTH,DAY,HOUR,MINUTE,SECOND, 

% RADIUS,THETA,PHI,PROTON_ENERGY,ELECTRON_ENERGY 

% , .. 

%      SOLAR_MAX) computes theirradiation flux on an 

% object. 

% 

% Input 

%  year       UT time year, XXXX [A.D.] 

% month               UT time month, Jan, Feb, ... [1, 2, 3,...] 

% day       UT time [day] 

% hour                UT time [hr] 

% minute              UT time [min] 

% second     UT time [s] 

% radius       Geocentric Geographic sherical raidus [m] 

% theta Geocentric Geographic sherical co-latitude [rad] 

% phi   Geocentric Geographic sherical azmuth [rad] 

% proton_energy       Proton energy of an interest [MeV] 

%   electron_energy  Electron energy of an interest [MeV] 

% solar_max Solar max? true or false [1,0] 

% 

% Output 

% proton_flux         Omnidirectional proton flux [p/cm^2/s] 

% electron_flux       Omnidirectional electon flux [p/cm^2/s] 


R_Earth = 6378137;             % Earth radius [m] 
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% Decide which data to use. 
if (solar_max)
    % If solar max, use AP8MAX and AE8MAX data.  
    AP_data = 'AP8MAX'; 
    AE_data = 'AE8MAX'; 
else
    % Otherwise, use AP8MIN and AE8MIN data. 
    AP_data = 'AP8MIN'; 

AE_data = 'AE8MIN'; 
end 


for i = 1:length(year)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This section uses the International Association of Geomagnetism and Aeronomy

% (IAGA) International Geomagnetic Refernce Field (IGRF) model to compute the

% magnetic field at a given time and location. The supporting functions are 

% from: 

% Tsyganenko's GEOPACK Library 

% Translated from original FORTRAN April 10-11, 2003 

% By Paul O'Brien (original by N.A. Tsyganenko)

% Paul.OBrien@aero.org (Nikolai.Tsyganenko@gsfc.nasa.gov) 

% Translation supported by NSF Grant ATM 0202107 

    % Initialize for magnetic field intensity calculation.  
    GEOPACK_RECALC(year,datenum(year(i),month(i),day(i)) - datenum(year(i),1,1) + 
1,hour(i),min(i),sec(i)); 
    % Magnetic field vector at (r,theta,phi) in Geocentric Geographic 
    % spherical coordinate [nT]. 
    [B_r,B_theta,B_phi] = GEOPACK_IGRF_GEO((radius(i)/R_Earth),theta,phi); 
    % Magnetic field intensity [nT]. 
    BetaValueF = sqrt(B_r^2 + B_theta^2 + B_phi^2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This section is from the radbelt_trmfun.c code written by: 

% August 10, 1998 Dan Leonard, 

% dleonard@cfa.harvard.edu, 

% (617) 496-7075

% (617) 496-7049 fax 

% This uses dipole approximation and can be improved. B0 is the magnetic 

% field intensity at the magnetic equator. This value should be computed 

% using the International Association of Geomagnetism and Aeronomy (IAGA)

% International Geomagnetic Refernce Field (IGRF) model. The L-value 

% calculation method should be improved. 

    % Compute L value 

    bottomF = 4 - (BetaValueF^2*(radius(i)/R_Earth)^6/(3.06e4*3.06e4)); 


L = 3*(radius(i)/R_Earth)/bottomF; 


    % From page 8 of the AP-8 Trapped Proton Documnent; 

    % also easily derivable from dipole approximation 
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    B_B0 = BetaValueF*L^3/3.06e4; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This section uses code translated from trmfun.for code written by: 
% Bieter Bilitza 
% TRMFUN.FOR 
% Trapped Radiation Models Program RADBELT 
% March 25, 1988 
% NASA Goddard Space Flight Center, code 633 
    % Compute proton irradiation flux [p/cm^2/s] 

    proton_flux(i,:) = 10.^trara1(L,B_B0,proton_energy,AP_data); 

    % Compute electron irradiation flux [p/cm^2/s] 

    electron_flux(i,:) = 10.^trara1(L,B_B0,electron_energy,AE_data); 

end 

function flux = trara1(L,B_B0,E,map_type) 
% FLUX = TRARA1(L,B_B0,ENERGY,MAP_TYPE) computes proton and electron flux. 
% 
% Input 
% L L-value of the magnetic shell currently in  
% B_B0 Magnetic field intensity normallized by the 
%     magnetic field intensity at the magnetic 
%     equitorial on the surface of Earth 
% E Energy [MeV] 
% map_type  Trapped radiation map type [AP8MAX,AP8MIN,AE8MAX,AE8MIN] 
% 
% Output 
% flux       Decadic logarithm of integral fluxe [p/cm^2/s] 
% 
% 
% This section uses code translated from trmfun.for code written by: 
% Bieter Bilitza 
% TRMFUN.FOR 
% Trapped Radiation Models Program RADBELT 
% March 25, 1988 
% NASA Goddard Space Flight Center, code 633 

global RADIATION_DB; 
if map_type == 'AP8MAX' 
    map_description = RADIATION_DB.AP8MAX; 

MAP            = RADIATION_DB.AP8MAX.map; 
elseif map_type == 'AP8MIN' 
    map_description = RADIATION_DB.AP8MIN; 

MAP            = RADIATION_DB.AP8MIN.map; 
elseif map_type == 'AE8MAX' 
    map_description = RADIATION_DB.AE8MAX; 

MAP            = RADIATION_DB.AE8MAX.map; 
elseif map_type == 'AE8MIN' 
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    map_description = RADIATION_DB.AE8MIN; 
MAP            = RADIATION_DB.AE8MIN.map; 

end 

F1 = 1.001; 

F2 = 1.002; 


FISTEP = map_description.flux_log_scale_factor/map_description.flux_log_increments_per_decade; 

ESCALE = map_description.energy_scale_factor;

FSCALE = map_description.flux_log_scale_factor; 

XNL = min(15.6,abs(L)); 

NL = XNL*map_description.L_scale_factor; 

if B_B0 < 1

    B_B0 = 1; 
end 
NB = (B_B0 - 1)*map_description.B_B0_scale_factor; 

% I2 IS THE NUMBER OF ELEMENTS IN THE FLUX MAP FOR THE FIRST ENERGY. 

% I3 IS THE INDEX OF THE LAST ELEMENT OF THE SECOND ENERGY MAP.

% L3 IS THE LENGTH OF THE MAP FOR THE THIRD ENERGY. 

% E1 IS THE ENERGY OF THE FIRST ENERGY MAP (UNSCALED)

% E2 IS THE ENERGY OF THE SECOND ENERGY MAP (UNSCALED)

I1 = 0; 

I1 = 0; 

I2 = MAP(1); 

I3 = I2 + MAP(I2+1);

L3 = MAP(I3+1);

E1 = MAP(I1+2)/ESCALE; 

E2 = MAP(I2+2)/ESCALE; 


% S0, S1, S2 ARE LOGICAL VARIABLES WHICH INDICATE WHETHER THE FLUX FOR

% A PARTICULAR E, B, L POINT HAS ALREADY BEEN FOUND IN A PREVIOUS CALL

% TO FUNCTION TRARA2. IF NOT, S.. =.TRUE. 

S1 = 1; 

S2 = 1; 


% ENERGY LOOP

for IE = 1:size(E)
    % FOR EACH ENERGY E(I) FIND THE SUCCESSIVE ENERGIES E0,E1,E2 IN
    % MODEL MAP, WHICH OBEY  E0 < E1 < E(I) < E2 . 
    while (~((E(IE) <= E2) | (L3==0))) 
        I0 = I1; 


I1 = I2; 

        I2 = I3; 


I3 = I3 + L3; 

        L3 = MAP(I3+1); 


E0 = E1; 

E1 = E2; 


        E2 = MAP(I2+2)/ESCALE; 

S0 = S1; 
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S1 = S2; 
S2 = 1; 


F0 = F1; 

F1 = F2; 


end 

    % CALL TRARA2 TO INTERPOLATE THE FLUX-MAPS FOR E1,E2 IN L-B/B0- 

    % SPACE TO FIND FLUXES F1,F2 [IF THEY HAVE NOT ALREADY BEEN

    % CALCULATED FOR A PREVIOUS E(I)]. 


if (S1) 

        F1 = trara2(NL,NB,map_type,I1+3-1)/FSCALE; 


end 

if (S2) 


        F2 = trara2(NL,NB,map_type,I2+3-1)/FSCALE; 

end 

S1 = 0; 

S2 = 0; 


    % FINALLY, INTERPOLATE IN ENERGY. 

    F(IE) = F1 + (F2 - F1)*(E(IE) - E1)/(E2 - E1); 

    if ~((F2 > 0) | (I1 == 0))

        % --------- SPECIAL INTERPOLATION --------------------------------- 

        % IF THE FLUX FOR THE SECOND ENERGY CANNOT BE FOUND (I.E. F2=0.0), 

        % AND THE ZEROTH ENERGY MAP HAS BEEN DEFINED (I.E. I1 NOT EQUAL 0), 

        % THEN INTERPOLATE USING THE FLUX MAPS FOR THE ZEROTH AND FIRST  

        % ENERGY AND CHOOSE THE MINIMUM OF THIS INTERPOLATIONS AND THE 

        % INTERPOLATION THAT WAS DONE WITH F2=0.  

        if (S0) 

            F0 = trara2(NL,NB,map_type,I0+3-1)/FSCALE; 


end 

S0 = 0; 


        F(IE) = min(F(IE),F0+(F1-F0)*(E(IE)-E0)/(E1-E0)); 

end 

    F(IE) = max(F(IE),0); 
end 
flux = F; 

function f = trara2(IL,IB,map_type,offset) 

%***************************************************************** 

%***  TRARA2 INTERPOLATES LINEARLY IN L-B/B0-MAP TO OBTAIN  *** 

%***  THE LOGARITHM OF INTEGRAL FLUX AT GIVEN L AND B/B0.      *** 

%***  INPUT: MAP[] IS SUB-MAP (FOR SPECIFIC ENERGY) OF  *** 

%***                   TRAPPED RADIATION MODEL MAP  *** 

%***           IL SCALED L-VALUE    *** 

%***           IB   SCALED B/B0-1         *** 

%***  OUTPUT: TRARA2  SCALED LOGARITHM OF PARTICLE FLUX  *** 

%***************************************************************** 

%***  SEE MAIN PROGRAM 'MODEL' FOR EXPLANATION OF MAP FORMAT  *** 

%***  SCALING FACTORS.                 *** 

%***  THE STEPSIZE FOR THE PARAMETERIZATION OF THE LOGARITHM  *** 
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%***  OF FLUX IS OBTAINED FROM 'COMMON/TRA2/'.    *** 
%*****************************************************************/ 
% /* FUNCTION TRARA2(int MAP,IL,IB) */ 

global RADIATION_DB; 
if map_type == 'AP8MAX' 
    map_description = RADIATION_DB.AP8MAX; 

MAP            = RADIATION_DB.AP8MAX.map; 
elseif map_type == 'AP8MIN' 
    map_description = RADIATION_DB.AP8MIN; 

MAP            = RADIATION_DB.AP8MIN.map; 
elseif map_type == 'AE8MAX' 
    map_description = RADIATION_DB.AE8MAX; 

MAP            = RADIATION_DB.AE8MAX.map; 
elseif map_type == 'AE8MIN' 
    map_description = RADIATION_DB.AE8MIN; 

MAP            = RADIATION_DB.AE8MIN.map; 
end 

FISTEP = map_description.flux_log_scale_factor/map_description.flux_log_increments_per_decade; 

I2 = 0; 

ITIME  = 0;

FNB    = IB; 

FNL  = IL; 

% FIND CONSECUTIVE SUB-SUB-MAPS FOR SCALED L-VALUES LS1,LS2, 

% WITH IL LESS OR EQUAL LS2.  L1,L2 ARE LENGTHS OF SUB-SUB-MAPS.  

% I1,I2 ARE INDECES OF FIRST ELEMENTS MINUS 1. 

L2 = MAP(offset+I2+1); 

while (MAP(offset+I2+2) <= IL) 

    I1 = I2; 


L1 = L2; 

    I2 = I2 + L2; 

    L2 = MAP(offset+I2+1); 

end 

% IF SUB-SUB-MAPS ARE EMPTY, I. E. LENGTH LESS 4, THAN TRARA2=0 
if ((L1 < 4) & (L2 < 4)) 

f = 0; 
    return; 
end 

% IF FLOG2 LESS FLOG1, THAN LS2 FIRST MAP AND LS1 SECOND MAP 
if (MAP(offset+I2+3) <= MAP(offset+I1+3)) 
    KT = I1; 
    I1 = I2; 
    I2 = KT; 
    KT = L1; 

L1 = L2; 
    L2 = KT; 
end 
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goto_position = 0; 


% DETERMINE INTERPOLATE IN SCALED L-VALUE 

FLL1 = MAP(offset+I1+2);

FLL2 = MAP(offset+I2+2);

DFL = (FNL - FLL1)/(FLL2 - FLL1); 

FLOG1 = MAP(offset+I1+3); 

FLOG2 = MAP(offset+I2+3); 

FKB1 = 0; 

FKB2 = 0; 

if (L1 < 4)

    goto_position = 32; 
end 

if (goto_position == 0)
    % B/B0 LOOP 
    for J2 = 4:L2 
        FINCR2 = MAP(offset+I2+J2); 

if ((FKB2 + FINCR2) > FNB)

            goto_position = 23;

            break; 


end 

        FKB2 = FKB2 + FINCR2; 

        FLOG2 = FLOG2 - FISTEP; 


end 
end 

if (goto_position == 0)
    ITIME = ITIME + 1; 

    KT = I1; 

    I1 = I2; 

    I2 = KT; 

    KT = L1; 


L1 = L2; 

    L2 = KT; 


    % DETERMINE INTERPOLATE IN SCALED L-VALUE 

    FLL1 = MAP(offset+I1+2); 

    FLL2 = MAP(offset+I2+2); 

    DFL = (FNL - FLL1)/(FLL2 - FLL1); 

    FLOG1 = MAP(offset+I1+3); 

    FLOG2 = MAP(offset+I2+3); 

    FKB1 = 0; 

    FKB2 = 0; 

    if (L1 < 4) 

        goto_position = 32; 


end 


    if (goto_position == 0) 
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        % B/B0 LOOP
        for J2 = 4:L2 

            FINCR2 = MAP(I2+J2); 

            if ((FKB2 + FINCR2) > FNB) 

                goto_position = 23; 

break; 

end 


            FKB2 = FKB2 + FINCR2; 

            FLOG2 = FLOG2 - FISTEP; 


end 
        if (goto_position == 0)


ITIME = ITIME + 1; 

f = 0; 


            return; 

end 

end 
end 

if (goto_position == 0 | goto_position == 23) 
    goto_position = 0; 
    if (ITIME == 1)
        goto_position = 30; 

    elseif (J2 == 4) 

        goto_position = 28; 


else 

        SL2 = FLOG2/FKB2;

        for J1 = 4:L1 

            FINCR1 = MAP(offset+I1+J1); 

    FKB1=FKB1+FINCR1; 
            FLOG1=FLOG1-FISTEP; 
            FKBJ1=((FLOG1/FISTEP)*FINCR1+FKB1)/((FINCR1/FISTEP)*SL2 + 1); 
            if (FKBJ1 <= FKB1) 
                goto_position = 31; 

break; 
end 

end 
end 

end 

if (goto_position == 0 & (FKBJ1 <= FKB2)) 
f = 0; 

    return; 
end 

if ((goto_position == 0 | goto_position == 31) & (FKBJ1 <= FKB2)) 
    goto_position = 29; 
end; 

if (goto_position == 0)
    FKB1 = 0; 
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end 

if (goto_position == 0 | goto_position == 30) 
    goto_position == 0; 
    FKB2 = 0; 
end 

if (goto_position == 0 | goto_position == 32) 
    goto_position == 0; 

J2 = 4; 
    FINCR2 = MAP(I2+J2); 
    FLOG2 = MAP(I2+3);    
    FLOG1 = MAP(I1+3); 
end 

if (goto_position == 0 | goto_position == 28) 
    goto_position = 0; 
    FLOGM = FLOG1 + (FLOG2-FLOG1)*DFL; 
    FKBM = 0; 
    FKB2 = FKB2 + FINCR2;  
    FLOG2 = FLOG2 - FISTEP; 
    SL2 = FLOG2/FKB2; 
    if (L1 < 4) 
        goto_position = 35; 


end 

    if (goto_position == 0) 


J1 = 4; 

        FINCR1 = MAP(I1+J1);               

        FKB1 = FKB1 + FINCR1; 

        FLOG1 = FLOG1 - FISTEP; 

        SL1 = FLOG1/FKB1;

        goto_position = 15; 


end 
end 

if (goto_position == 0 | goto_position == 29) 
    goto_position = 0; 
    FKBM = FKBJ1 + (FKB2 - FKBJ1)*DFL; 
    FLOGM = FKBM*SL2; 
    FLOG2 = FLOG2-FISTEP; 
    FKB2 = FKB2+FINCR2;
    SL1 = FLOG1/FKB1; 
    SL2 = FLOG2/FKB2; 
end 

if (goto_position == 35) 
    goto_position = 0; 
    FINCR1 = 0; 
    SL1 = -900000; 
    FKBJ1 = ((FLOG1/FISTEP)*FINCR1+FKB1)/((FINCR1/FISTEP)*SL2 + 1); 
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    FKB = FKBJ1 + (FKB2 - FKBJ1)*DFL; 

    FLOG = FKB*SL2; 

    if (FKB >= FNB) 

        goto_position = 60; 

break; 

end 


    FKBM = FKB; 

    FLOGM = FLOG; 

    if (J2 >= L2) 


f = 0; 
        return; 


end 

J2 = J2 + 1; 


    FINCR2 = MAP(I2+J2);

    FLOG2 = FLOG2 - FISTEP; 

    FKB2 = FKB2 + FINCR2; 

    SL2 = FLOG2/FKB2; 

    goto_position = 15; 

end 

if (goto_position == 0 | goto_position == 15) 
    goto_position = 0; 

while (1) 
        if (SL1 >= SL2) 
            FKBJ2 = ((FLOG2/FISTEP)*FINCR2 + FKB2)/((FINCR2/FISTEP)*SL1 + 1); 

    FKB = FKB1 + (FKBJ2 - FKB1)*DFL; 
    FLOG = FKB*SL1; 

            if (FKB >= FNB)

                goto_position = 60; 


break; 

end 

    FKBM = FKB; 

FLOGM = FLOG; 


            if (J1 >= L1) 

f = 0; 

return; 


end 

J1 = J1 + 1; 


            FINCR1 = MAP(I1+J1); 

FLOG1 = FLOG1 - FISTEP; 

FKB1=FKB1+FINCR1; 

SL1 = FLOG1/FKB1; 


else 
            FKBJ1 = ((FLOG1/FISTEP)*FINCR1+FKB1)/((FINCR1/FISTEP)*SL2 + 1); 
            FKB = FKBJ1 + (FKB2 - FKBJ1)*DFL; 
            FLOG = FKB*SL2;
            if (FKB >= FNB)
                goto_position = 60; 


break; 

end 
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            FKBM = FKB; 

            FLOGM = FLOG; 

            if (J2 >= L2) 


f = 0; 
return; 


end 

            J2 = J2 + 1; 

            FINCR2 = MAP(I2+J2); 

            FLOG2 = FLOG2 - FISTEP; 

            FKB2 = FKB2 + FINCR2; 

            SL2 = FLOG2/FKB2; 


end 
end 

end 

if (goto_position == 60) 
    goto_position = 0; 
    if (FKB < (FKBM + 1e-10)) 

f = 0; 
        return; 


end 

    f = FLOGM + (FLOG - FLOGM)*((FNB - FKBM)/(FKB - FKBM)); 

    f = max(f,0); 

    return; 

end 

f = 0; 

APPENDIX B: SOLAR CELL DEGRADATION MODULE 

% Predicting Solar Cell Degradation as a Function of Radiation 
% Seung Chung & Matthew Richards 
% 16.851 Problem Set #3 

% This module performs two tasks 
% 1. Model power loss of GaAs/Ge cells following proton irradiation 
% 2. Model power loss of n/p Si cells following electron irradiation 

% Define Constants 
P_o = 1 
C = .1295 
D_x = 1.295*10^9 

% Input Dose of Protons 
D = [10^7 10^7.5 10^8 10^8.5 10^9 10^9.5 10^10 10^10.5 10^11 10^11.5 10^12]  % MeV/g 

% Calculate Characteristic Curve For Proton Damage of GaAs/Ge cells 
P_max = (1-C*log(1+D./D_x)).*P_o 
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% Graph P_max / P_o, the normalized maximum power of GaAs/Ge cells as a function of absorbed proton dose 

figure

semilogx(D, P_max, '-');

title('Power loss of GaAs/Ge cells following proton irradiation as a function of absorbed dose')

xlabel('Absorbed dose (MeV/g)') 

ylabel('P_max / P_o') 

AXIS([10^7 10^12 .4 1]) 

hold


% Electron induced damage

% Overall equation: D_eff = D * (S_e(E) / S_e(1.0))^(n-1) 


% Defining variables 

D_eff = 1.0; % Measured in MeV 


% Experimentally determined exponents

% n=1 for n-type silicon

% n=2 for p-type silicon, GaAs, and InP


% Calculate Characteristic Curve For Electron Damage of n/p Si cells

P_o = 1 

C = 0.06593 

D_x = 1.841*10^8 

P_max = (1-C*log(1+D./D_x)).*P_o


% Input Dose of Electrons

D = [10^7 10^7.5 10^8 10^8.5 10^9 10^9.5 10^10 10^10.5 10^11 10^11.5 10^12] 

% MeV/g 


% Graph P_max / P_o, the normalized maximum power of n/p Si cells as a function of absorbed electron dose 

figure

semilogx(D, P_max, '-');

title('Power loss of n/p Si cells following electron irradiation as a function of absorbed dose')

xlabel('Absorbed dose (MeV/g)') 

ylabel('P_max / P_o') 

AXIS([10^7 10^12 .4 1]) 

Hold


Table of NIEL Values for Protons and Electrons in Si, GaAs and INP 
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