
PROBLEM SET #3

TO: PROF. DAVID MILLER, PROF. JOHN KEESEE, AND MS. MARILYN GOOD

FROM: NAMES WITHHELD

SUBJECT: PROBLEM SET #3 (SPACE ENVIRONMENT AND POWER SUBSYSTEMS)

DATE: 12/11/2003

MOTIVATION

The Engineering Test Satellite VI (ETS-VI) was launched by the H-II Launch Vehicle Flight No. 2 in
August 1994, but it was not placed into the prescribed geostationary orbit because of an apogee engine
trouble. Later, the satellite was placed into a geostationary-transfer orbit across the Van Allen Belt made up
of high energy protons and electrons trapped along field lines of the Earth. As a result, the ETS-VI had
been exposed to a huge amount of space radiation and the solar cell decreased power output and the satellite
ceased to operate in 1996.

Degradation of solar array performance due to radiation within space environment is an important effect to
consider when designing the power subsystem. Although not all spacecraft experience the fate of the ETS
VI in the Van Allen Belt, the solar arrays of a typical satellite in Low Earth Orbit loses 15% of its power
producing capability in 5 years time. Furthermore, since many space missions are considering electric
propulsion as its means for orbit transfer, the degradation effect on solar arrays will increase as more time is
spent within the Van Allen radiation belts. As solar arrays are a critical complimentary subsystem to the
power-intensive electric propulsion subsystem, it is important to provide a detailed characterization of the
degradation effect on the solar arrays over the mission life.

PROBLEM STATEMENT

Characterize the degradation of a solar array given orbit position as a function of time. Conduct a literature
search to better characterize the effect of radiation on solar arrays, beyond what has been presented in Space
Mission Analysis and Design by Wertz and Larson. Develop a MATLAB module that characterizes the radiation
dosage as a function of time. Also develop a method for computing degradation of the solar array based on
the radiation dosage. To simply the problem, model the Van Allen Belts as a function of altitude and latitude
only. In characterizing the radiation dose, model just the Van Allen Belts, but discuss how to incorporate
other sources of radiation, such as solar particle events and galactic cosmic rays, into the module.

APPROACH

The following block diagram depicts the inputs and outputs of our model:

 Position (t)

l

Fi

Compute Solar Cell
Data

 Magnetic Fie d (t)

Rate of Electron and Proton Fluence

Cell Type

Compute Magnetic
eld Intensity

Compute Electron
and Proton Radiation

Degradation
Compile Experimental

 Power loss

RADIATION ENVIRONMENT

Introduction

A spacecraft around Earth orbit is irradiated by many types of radiations, including trapped radiation, solar
particle events, and Galactic cosmic rays. In particular, the trapped radiation of the Van Allen radiation belts
is problematic to Earth orbiting satellites’ solar arrays performance. An accurate model of the radiation from
the Van Allen radiation belts can help in prediction of solar cell degradation during the design stage. In this
section we describe a Matlab module that models the radiation due to trapped proton and electron particles
around the Earth’s magnetic field, i.e. Van Allen radiation belt.

Earth’s Magnetic Field

Earth’s magnetic field can be model using the International Association of Geomagnetism and Astronomy
(IAGA) International Geomagnetic Reference Field (IGRF) model for given time (in UT) and location. More
specifically, we use Tsyganenko's GEOPACK Library that has been written translated into a Matlab code
from a Fortran code.

Using the GEOPACK Library, the magnetic field can be model for October 15, 2003, 18:00:00 UT at -71°
longitude in Geocentric Geographic Coordinate system as shown in Figures 1.1 and 1.2.

2

The power output of solar cells is severely reduced by radiation damage. The solar arrays of a typical satellite
in Low Earth Orbit loses 15% of its power producing capability in 5 years time. Predicting the degradation
of the solar cells over the course of a mission can be crucial to determining the length of the mission. Power
subsystems of spacecraft are designed to meet end-of-life requirements, and as such, it is necessary to predict
power loss of solar cells over the mission life. There is limited existing experimental data of solar cell
degradation as a function of electron and proton fluence. Therefore, a method for degradation predicition
that relies on limited experimental data is desirable.

One approach to correlating power loss to radiation consists of multiplying the calculated nonionizing energy
loss (NIEL)2 and the fluence (Summers, 1994). The power losses associated with proton irradiation is a
special case because of the linear dependance of the proton damage coefficient on the NIEL for all solar
cells. Electron irradiation, however, does not vary linearly with NIEL and a more general approach is
required. This method of characterizing the effects of radiation on solar cells in terms of absorbed
displacement damage dose enables the prediction of power losses in the space environment with limited
experimental data.

In the following sections, we demonstate the aforementioned method (Summers, 1994) for Gallium Arsenide
solar cells. However, our modules can also be applied to Si (21eV), Si (12.9eV), and INP and solar cells for
which experimental data of proton and electron fluence exists.

Protons

Figure 2.1 shows experimentally measured curves of the normalized power degradation for GaAs/Ge solar
cells. Power degradation for the GaAs/Ge solar cell after exposure to protons for energy levels of 0.05, 0.1,
0.3, 1, 2.5, and 10 MeV are displayed.

Figure 2.1 Power degradation for GaAs/Ge solar cell after exposure to protons, for different energies and
fluences (Sharps, 2003).

As shown in Equation 2.1, a characteristic curve for proton damage (Figure 2.2) can then be obtained by
multiplying the proton fluence, Φ(E), by the NIEL, S(E), for a given energy level, E. (A table of NIEL
values for protons and electrons in Si, GaAs and INP is included in the appendix).

2 The NIEL is the rate at which an incident ion loses energy to displacement damage (Summers, 1991).

7

) ⋅ (D Φ = (E S E) (2.1)

In this way, the data for all energy levels can be represented by a single characteric function.

Figure 2.2 Characteristic curve for proton damage.

The characteristic curve is generated to model the power loss due to proton irradiation. The plot is fitted to
experimental data (product of NIEL and fluence) and is defined by Equation 2.2. In Equation 2.2, Pmax/Po

represents the normalized beginning-of-life power after exposure to a given dose of protons. D represents
the dose in units of MeV/g. C and Dx are constants fitted to the experimental data, equal to .1295 and
1.295× 109 respectively (Summers, 1994).

P
C

⎛
⎜
⎝
1 ln ⎜ +
 D
⎞⎟

⎠
⎟

max = 1− (2.2)
P o D x

Equation 2.2 can be modified to compute the dose required to reduce the power to any given level:

8

C x

⎛
 1− max ⎞
D =
D

e − (2.3)1
⎟
⎟
⎟
⎠

P

Po⎜
⎜
⎜
⎝

The primary advantage of this method is that the dose remains constant for any positive ion of energy. The
plot provides the absorbed does for a given reduction of power. Dividing the dose by the NIEL for a energy
value of our choice (not only energy values for which experimental data exists), we can output the fluence.
This enables an entire group of damage coefficients to be obtained from a single characteristic curve.

Electrons

Figure 2.3 shows experimentally measured curves of the normalized power degradation for GaAs/Ge solar
cells. Power degradation for the GaAs/Ge solar cell after exposure to electrons for energy levels of 0.6, 1, 2,
and 12 MeV are displayed.

Figure 2.3 Power Degradation for GaAs/Ge solar cell after exposure to electrons, for different energies and
fluences (Sharps, 2003).

As before, the damage energy deposited by electrons of a given energy is calculated using Equation 2.1.
However, the electron case proves more complicated than the proton case because damage coefficients no
longer vary linearly with the NIEL. Instead of generating a characteristic curve such as the one in Figure 2.2,
a range of data is produced (Figure 2.4).

9

Figure 2.4 Power loss of GaAs/Ge cells from electron irradiation plotted against absorbed dose (Summers,
1994).

To compensate for the non-linear variation of damage coefficients and NIEL, it is necessary to define a
effective dose of electron energy, Deff. This value is typically chosen as 1.0 MeV (Ansbaugh, 1991). The value
of n in Equation 2.4 must be experimentally determined.

(−)1()ES

S()0.1

n
⎛
 ⎞

D
eff)0.1(
 = D (2.4)⎜⎜
⎝

⎟⎟
⎠

By defining this effective absorbed dose of 1.0 MeV of electron energy, a characteristic curve can be
generated (Figure 2.5).

Figure 2.5 Power loss of GaAs/Ge cells from electron irradiation plotted against effective 1.0 MeV electron
absorbed dose. (Summers, 1994).

10

Figure 2.5 is important not only for displaying the ability of the Equation 2.4 to return a characteristic curve,
but also for displaying the relationship between degradation caused by electrons and protons. Manipulation
of these plots will eventually enable correlation between proton and electron effects.

To demonstrate the applicability of this method of utilizing effective dose of electron energy, Deff, for other
solar cell types, the characteristic curve of Si solar cells is calculated. Deff is again set to 1.0 MeV and n is
found to be 2 for silicon from experimental data (Summers, 1994). Using Equations 2.1, 2.2, and 2.4, the
electron absorbed dose is then plotted for various electron energies. As expected, the data coverges on a
single line which can be defined by Equation 2.1 with C and Dx as constants fitted to plot, equal to 0.06593
and 1.841×108 respectively (Figure 2.6).

Figure 2.6 Characteristic curve for electron damage.

As in the proton case, the electron characteristic curve enables the fluence of electrons of any energy to be
calculated for a given power loss. This can be useful in the solar cell selection process. For example,
degradation of various solar cell types can be compared by calculation of the fluence of 1 MeV electrons.

11

Proton and Electron Effects Applied to Radiation Model

D = ∫∫
E d , t)

E S , dtdE t (2.5)
φ(

()
dE

φ (nDeff)0.1(= S)0.1(−(n−)1 ∫∫
E d , t)

E S , t) dEdt (2.6)(
dE

SUGGESTIONS FOR FUTURE WORK

There are additional factors that should be included in future studies on solar cell performance in complex
space environments.

In the solar cell degradation model, it is important to note that only cell degradation as a result of irradiation
with a unidirectional beam of particles is considered. Solar cells in a real space environment will be subject to
isotropic bombardments. Another simplifying assumption made in the solar cell degradation model was that
low energy protons (those without enough energy to reach the active region of the cell) need not be
considered. By choosing a suitbale lower limit used on the integral for the dose calculation, low energy
protons are neglected. Although low energy protons can usually be neglected due to the logarithmic
dependence of the maximum power on dose, it is something future work can consider.

CONCLUSIONS

Characterizing the effects of radiation on solar cells in terms of absorbed displacement damage dose as
opposed to particle fluence reduces the experimental data needed to predict power losses in the space
environment.

REFERENCES

N. A. Tsyganenko, A. V. Usmanov, Determination of the Magnetospheric Current System Parameters and
Development of Experimental Geomagnetic Field Models Based on Data from IMP and HEOS Satellites,
Planet. Space Sci. 30, 985-998, 1982.

http://nssdc.gsfc.nasa.gov/space/model/

Allen, Douglas M. “A survey of next generation solar arrays (for spacecraft electric power).” W. J. Schafer
Associates. AIAA, 1997.

Anspaugh, Bruce E. “Proton and Electron Damage Coefficients for GaAs/Ge Solar Cells. Jet Propulsion
Laboratory. IEEE, 1991.

Gaddy, Edward M. “Relative cost effectiveness of multi-junction, gallium arsenide, and silicon solar cells.”
NASA Goddard Space Flight Center. AIAA, 1996.

12

Gardner, B. M. “A Tool for Assessing Photovoltaic Array End-of-Life Power Performance.” NASA Lewis
Research Center. AIAA, 1997.

Kerslake, Thomas W. “Solar Power System Options for the Radiation and Technology Demonstration
Spacecraft.” NASA Glenn Research Center. AIAA, 2000.

Landis, Geoffrey A. “Photovoltaic Power for Future NASA Missions.” NASA John Glenn Research Center.
AIAA, 2002.

Ralph, E. “Solar Cell Array System Trades – Present and Future.” TECSTAR/ASD. AIAA, 1999.

“Research on Radiation Damage Mechanisms of Si Solar Cell.” NASDA Office of Research and Development. No.
73, July 1998. http://www.nasda.go.jp/lib/nasda-news/1998/07/solar_e.html (5 October 2003).

Sharps, P. R. “High Efficiency Advanced Triple-Junction Space Solar Cell Production at Emcore
Photovoltaics.” Emcore Photovoltaics. AIAA, 2003.

“Solar Radiation Handbook.” Jet Propulsion Laboratory. Third Edition, 1982.

Summers, Geoffrey P. “A General Method for Predicting Radiation Damage to Solar Cells in the Space
Environment.” Naval Research Laboratory. IEEE, 1991.

Summers, Geoffrey P. “A New Approach To Damage Prediction For Solar Cells Exposed To Different
Radiations.” Naval Research Laboratory. IEEE, 1994.

Visentine, J. “MIR Solar Array Return Experiment.” Boeing Space Station Program Office. AIAA, 1999.

APPENDIX A: RADIATION ENVIRONMENT MODULE

function load_AP8AE8_data()

% LOAD_AP8AE8_DATA() loads AP8MAX, AP8MIN, AE8MAX, and AE8MIN data.

% .type Model map type

% .flux_log_increments_per_decade Increments per decadeof logarithmic flux

%

% .epoch Epoch of model

% .energy_scale_factor Scale factor for energy = E(map)/(E/MeV)

% = 6400 (AE-8), 100 (AP-8)

% .L_scale_factor Scale factor for L

% = 2100 (AE-8), 2048 (AP-8)

% .B_B0_scale_factor scale factor for B/B0

% = 1024 (AE-8), 2048 (AP-8)

% .flux_log_scale_factor Scale factor for logarithm of fluxes

% = 1024 (AE,AP-8)

% .number_of_elements Number of elements in map

% = 13548 (AE8MAX), 13168 (AE8MIN),

% 6509 (AP8MAX), 6688 (AP8MIN)

% .map Data

global RADIATION_DB;

13

RADIATION_DB = struct('AP8MAX',[],'AP8MIN',[],'AE8MAX',[],'AE8MIN',[]);

file = {'ap8max.asc' 'ap8min.asc' 'ae8max.asc' 'ae8min.asc'};

data = {'AP8MAX' 'AP8MIN' 'AE8MAX' 'AE8MIN'};

for i = 1:length(data)
 x = textread(file{4},'%6n','delimiter',' ');
 RADIATION_DB = setfield(RADIATION_DB,data{i},struct('type',x(1),...

 'flux_log_increments_per_decade',x(2),...

 'epoch',x(3),...

 'energy_scale_factor',x(4),...

 'L_scale_factor',x(5),...

 'B_B0_scale_factor',x(6),...

 'flux_log_scale_factor',x(7),...

 'number_of_elements',x(8),...

 'map',x(9:length(x))));

end

function [proton_flux,electron_flux] = compute_irradiation_flux...
(year,month,day,hour,minute,second,...
 radius,theta,phi,...
 proton_energy,electron_energy,solar_max)

% [PROTON_FLUX,ELECTRON_FLUX] =

% COMPUTE_IRRADIATION_FLUX(YEAR,MONTH,DAY,HOUR,MINUTE,SECOND,

% RADIUS,THETA,PHI,PROTON_ENERGY,ELECTRON_ENERGY

% , ..

% SOLAR_MAX) computes theirradiation flux on an

% object.

%

% Input

% year UT time year, XXXX [A.D.]

% month UT time month, Jan, Feb, ... [1, 2, 3,...]

% day UT time [day]

% hour UT time [hr]

% minute UT time [min]

% second UT time [s]

% radius Geocentric Geographic sherical raidus [m]

% theta Geocentric Geographic sherical co-latitude [rad]

% phi Geocentric Geographic sherical azmuth [rad]

% proton_energy Proton energy of an interest [MeV]

% electron_energy Electron energy of an interest [MeV]

% solar_max Solar max? true or false [1,0]

%

% Output

% proton_flux Omnidirectional proton flux [p/cm^2/s]

% electron_flux Omnidirectional electon flux [p/cm^2/s]

R_Earth = 6378137; % Earth radius [m]

14

% Decide which data to use.
if (solar_max)
 % If solar max, use AP8MAX and AE8MAX data.
 AP_data = 'AP8MAX';
 AE_data = 'AE8MAX';
else
 % Otherwise, use AP8MIN and AE8MIN data.
 AP_data = 'AP8MIN';

AE_data = 'AE8MIN';
end

for i = 1:length(year)

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This section uses the International Association of Geomagnetism and Aeronomy

% (IAGA) International Geomagnetic Refernce Field (IGRF) model to compute the

% magnetic field at a given time and location. The supporting functions are

% from:

% Tsyganenko's GEOPACK Library

% Translated from original FORTRAN April 10-11, 2003

% By Paul O'Brien (original by N.A. Tsyganenko)

% Paul.OBrien@aero.org (Nikolai.Tsyganenko@gsfc.nasa.gov)

% Translation supported by NSF Grant ATM 0202107

 % Initialize for magnetic field intensity calculation.
 GEOPACK_RECALC(year,datenum(year(i),month(i),day(i)) - datenum(year(i),1,1) +
1,hour(i),min(i),sec(i));
 % Magnetic field vector at (r,theta,phi) in Geocentric Geographic
 % spherical coordinate [nT].
 [B_r,B_theta,B_phi] = GEOPACK_IGRF_GEO((radius(i)/R_Earth),theta,phi);
 % Magnetic field intensity [nT].
 BetaValueF = sqrt(B_r^2 + B_theta^2 + B_phi^2);

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This section is from the radbelt_trmfun.c code written by:

% August 10, 1998 Dan Leonard,

% dleonard@cfa.harvard.edu,

% (617) 496-7075

% (617) 496-7049 fax

% This uses dipole approximation and can be improved. B0 is the magnetic

% field intensity at the magnetic equator. This value should be computed

% using the International Association of Geomagnetism and Aeronomy (IAGA)

% International Geomagnetic Refernce Field (IGRF) model. The L-value

% calculation method should be improved.

 % Compute L value

 bottomF = 4 - (BetaValueF^2*(radius(i)/R_Earth)^6/(3.06e4*3.06e4));

L = 3*(radius(i)/R_Earth)/bottomF;

 % From page 8 of the AP-8 Trapped Proton Documnent;

 % also easily derivable from dipole approximation

15

 B_B0 = BetaValueF*L^3/3.06e4;

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This section uses code translated from trmfun.for code written by:
% Bieter Bilitza
% TRMFUN.FOR
% Trapped Radiation Models Program RADBELT
% March 25, 1988
% NASA Goddard Space Flight Center, code 633
 % Compute proton irradiation flux [p/cm^2/s]

 proton_flux(i,:) = 10.^trara1(L,B_B0,proton_energy,AP_data);

 % Compute electron irradiation flux [p/cm^2/s]

 electron_flux(i,:) = 10.^trara1(L,B_B0,electron_energy,AE_data);

end

function flux = trara1(L,B_B0,E,map_type)
% FLUX = TRARA1(L,B_B0,ENERGY,MAP_TYPE) computes proton and electron flux.
%
% Input
% L L-value of the magnetic shell currently in
% B_B0 Magnetic field intensity normallized by the
% magnetic field intensity at the magnetic
% equitorial on the surface of Earth
% E Energy [MeV]
% map_type Trapped radiation map type [AP8MAX,AP8MIN,AE8MAX,AE8MIN]
%
% Output
% flux Decadic logarithm of integral fluxe [p/cm^2/s]
%
%
% This section uses code translated from trmfun.for code written by:
% Bieter Bilitza
% TRMFUN.FOR
% Trapped Radiation Models Program RADBELT
% March 25, 1988
% NASA Goddard Space Flight Center, code 633

global RADIATION_DB;
if map_type == 'AP8MAX'
 map_description = RADIATION_DB.AP8MAX;

MAP = RADIATION_DB.AP8MAX.map;
elseif map_type == 'AP8MIN'
 map_description = RADIATION_DB.AP8MIN;

MAP = RADIATION_DB.AP8MIN.map;
elseif map_type == 'AE8MAX'
 map_description = RADIATION_DB.AE8MAX;

MAP = RADIATION_DB.AE8MAX.map;
elseif map_type == 'AE8MIN'

16

 map_description = RADIATION_DB.AE8MIN;
MAP = RADIATION_DB.AE8MIN.map;

end

F1 = 1.001;

F2 = 1.002;

FISTEP = map_description.flux_log_scale_factor/map_description.flux_log_increments_per_decade;

ESCALE = map_description.energy_scale_factor;

FSCALE = map_description.flux_log_scale_factor;

XNL = min(15.6,abs(L));

NL = XNL*map_description.L_scale_factor;

if B_B0 < 1

 B_B0 = 1;
end
NB = (B_B0 - 1)*map_description.B_B0_scale_factor;

% I2 IS THE NUMBER OF ELEMENTS IN THE FLUX MAP FOR THE FIRST ENERGY.

% I3 IS THE INDEX OF THE LAST ELEMENT OF THE SECOND ENERGY MAP.

% L3 IS THE LENGTH OF THE MAP FOR THE THIRD ENERGY.

% E1 IS THE ENERGY OF THE FIRST ENERGY MAP (UNSCALED)

% E2 IS THE ENERGY OF THE SECOND ENERGY MAP (UNSCALED)

I1 = 0;

I1 = 0;

I2 = MAP(1);

I3 = I2 + MAP(I2+1);

L3 = MAP(I3+1);

E1 = MAP(I1+2)/ESCALE;

E2 = MAP(I2+2)/ESCALE;

% S0, S1, S2 ARE LOGICAL VARIABLES WHICH INDICATE WHETHER THE FLUX FOR

% A PARTICULAR E, B, L POINT HAS ALREADY BEEN FOUND IN A PREVIOUS CALL

% TO FUNCTION TRARA2. IF NOT, S.. =.TRUE.

S1 = 1;

S2 = 1;

% ENERGY LOOP

for IE = 1:size(E)
 % FOR EACH ENERGY E(I) FIND THE SUCCESSIVE ENERGIES E0,E1,E2 IN
 % MODEL MAP, WHICH OBEY E0 < E1 < E(I) < E2 .
 while (~((E(IE) <= E2) | (L3==0)))
 I0 = I1;

I1 = I2;

 I2 = I3;

I3 = I3 + L3;

 L3 = MAP(I3+1);

E0 = E1;

E1 = E2;

 E2 = MAP(I2+2)/ESCALE;

S0 = S1;

17

S1 = S2;
S2 = 1;

F0 = F1;

F1 = F2;

end

 % CALL TRARA2 TO INTERPOLATE THE FLUX-MAPS FOR E1,E2 IN L-B/B0-

 % SPACE TO FIND FLUXES F1,F2 [IF THEY HAVE NOT ALREADY BEEN

 % CALCULATED FOR A PREVIOUS E(I)].

if (S1)

 F1 = trara2(NL,NB,map_type,I1+3-1)/FSCALE;

end

if (S2)

 F2 = trara2(NL,NB,map_type,I2+3-1)/FSCALE;

end

S1 = 0;

S2 = 0;

 % FINALLY, INTERPOLATE IN ENERGY.

 F(IE) = F1 + (F2 - F1)*(E(IE) - E1)/(E2 - E1);

 if ~((F2 > 0) | (I1 == 0))

 % --------- SPECIAL INTERPOLATION ---------------------------------

 % IF THE FLUX FOR THE SECOND ENERGY CANNOT BE FOUND (I.E. F2=0.0),

 % AND THE ZEROTH ENERGY MAP HAS BEEN DEFINED (I.E. I1 NOT EQUAL 0),

 % THEN INTERPOLATE USING THE FLUX MAPS FOR THE ZEROTH AND FIRST

 % ENERGY AND CHOOSE THE MINIMUM OF THIS INTERPOLATIONS AND THE

 % INTERPOLATION THAT WAS DONE WITH F2=0.

 if (S0)

 F0 = trara2(NL,NB,map_type,I0+3-1)/FSCALE;

end

S0 = 0;

 F(IE) = min(F(IE),F0+(F1-F0)*(E(IE)-E0)/(E1-E0));

end

 F(IE) = max(F(IE),0);
end
flux = F;

function f = trara2(IL,IB,map_type,offset)

%***

%*** TRARA2 INTERPOLATES LINEARLY IN L-B/B0-MAP TO OBTAIN ***

%*** THE LOGARITHM OF INTEGRAL FLUX AT GIVEN L AND B/B0. ***

%*** INPUT: MAP[] IS SUB-MAP (FOR SPECIFIC ENERGY) OF ***

%*** TRAPPED RADIATION MODEL MAP ***

%*** IL SCALED L-VALUE ***

%*** IB SCALED B/B0-1 ***

%*** OUTPUT: TRARA2 SCALED LOGARITHM OF PARTICLE FLUX ***

%***

%*** SEE MAIN PROGRAM 'MODEL' FOR EXPLANATION OF MAP FORMAT ***

%*** SCALING FACTORS. ***

%*** THE STEPSIZE FOR THE PARAMETERIZATION OF THE LOGARITHM ***

18

%*** OF FLUX IS OBTAINED FROM 'COMMON/TRA2/'. ***
%***/
% /* FUNCTION TRARA2(int MAP,IL,IB) */

global RADIATION_DB;
if map_type == 'AP8MAX'
 map_description = RADIATION_DB.AP8MAX;

MAP = RADIATION_DB.AP8MAX.map;
elseif map_type == 'AP8MIN'
 map_description = RADIATION_DB.AP8MIN;

MAP = RADIATION_DB.AP8MIN.map;
elseif map_type == 'AE8MAX'
 map_description = RADIATION_DB.AE8MAX;

MAP = RADIATION_DB.AE8MAX.map;
elseif map_type == 'AE8MIN'
 map_description = RADIATION_DB.AE8MIN;

MAP = RADIATION_DB.AE8MIN.map;
end

FISTEP = map_description.flux_log_scale_factor/map_description.flux_log_increments_per_decade;

I2 = 0;

ITIME = 0;

FNB = IB;

FNL = IL;

% FIND CONSECUTIVE SUB-SUB-MAPS FOR SCALED L-VALUES LS1,LS2,

% WITH IL LESS OR EQUAL LS2. L1,L2 ARE LENGTHS OF SUB-SUB-MAPS.

% I1,I2 ARE INDECES OF FIRST ELEMENTS MINUS 1.

L2 = MAP(offset+I2+1);

while (MAP(offset+I2+2) <= IL)

 I1 = I2;

L1 = L2;

 I2 = I2 + L2;

 L2 = MAP(offset+I2+1);

end

% IF SUB-SUB-MAPS ARE EMPTY, I. E. LENGTH LESS 4, THAN TRARA2=0
if ((L1 < 4) & (L2 < 4))

f = 0;
 return;
end

% IF FLOG2 LESS FLOG1, THAN LS2 FIRST MAP AND LS1 SECOND MAP
if (MAP(offset+I2+3) <= MAP(offset+I1+3))
 KT = I1;
 I1 = I2;
 I2 = KT;
 KT = L1;

L1 = L2;
 L2 = KT;
end

19

goto_position = 0;

% DETERMINE INTERPOLATE IN SCALED L-VALUE

FLL1 = MAP(offset+I1+2);

FLL2 = MAP(offset+I2+2);

DFL = (FNL - FLL1)/(FLL2 - FLL1);

FLOG1 = MAP(offset+I1+3);

FLOG2 = MAP(offset+I2+3);

FKB1 = 0;

FKB2 = 0;

if (L1 < 4)

 goto_position = 32;
end

if (goto_position == 0)
 % B/B0 LOOP
 for J2 = 4:L2
 FINCR2 = MAP(offset+I2+J2);

if ((FKB2 + FINCR2) > FNB)

 goto_position = 23;

 break;

end

 FKB2 = FKB2 + FINCR2;

 FLOG2 = FLOG2 - FISTEP;

end
end

if (goto_position == 0)
 ITIME = ITIME + 1;

 KT = I1;

 I1 = I2;

 I2 = KT;

 KT = L1;

L1 = L2;

 L2 = KT;

 % DETERMINE INTERPOLATE IN SCALED L-VALUE

 FLL1 = MAP(offset+I1+2);

 FLL2 = MAP(offset+I2+2);

 DFL = (FNL - FLL1)/(FLL2 - FLL1);

 FLOG1 = MAP(offset+I1+3);

 FLOG2 = MAP(offset+I2+3);

 FKB1 = 0;

 FKB2 = 0;

 if (L1 < 4)

 goto_position = 32;

end

 if (goto_position == 0)

20

 % B/B0 LOOP
 for J2 = 4:L2

 FINCR2 = MAP(I2+J2);

 if ((FKB2 + FINCR2) > FNB)

 goto_position = 23;

break;

end

 FKB2 = FKB2 + FINCR2;

 FLOG2 = FLOG2 - FISTEP;

end
 if (goto_position == 0)

ITIME = ITIME + 1;

f = 0;

 return;

end

end
end

if (goto_position == 0 | goto_position == 23)
 goto_position = 0;
 if (ITIME == 1)
 goto_position = 30;

 elseif (J2 == 4)

 goto_position = 28;

else

 SL2 = FLOG2/FKB2;

 for J1 = 4:L1

 FINCR1 = MAP(offset+I1+J1);

 FKB1=FKB1+FINCR1;
 FLOG1=FLOG1-FISTEP;
 FKBJ1=((FLOG1/FISTEP)*FINCR1+FKB1)/((FINCR1/FISTEP)*SL2 + 1);
 if (FKBJ1 <= FKB1)
 goto_position = 31;

break;
end

end
end

end

if (goto_position == 0 & (FKBJ1 <= FKB2))
f = 0;

 return;
end

if ((goto_position == 0 | goto_position == 31) & (FKBJ1 <= FKB2))
 goto_position = 29;
end;

if (goto_position == 0)
 FKB1 = 0;

21

end

if (goto_position == 0 | goto_position == 30)
 goto_position == 0;
 FKB2 = 0;
end

if (goto_position == 0 | goto_position == 32)
 goto_position == 0;

J2 = 4;
 FINCR2 = MAP(I2+J2);
 FLOG2 = MAP(I2+3);
 FLOG1 = MAP(I1+3);
end

if (goto_position == 0 | goto_position == 28)
 goto_position = 0;
 FLOGM = FLOG1 + (FLOG2-FLOG1)*DFL;
 FKBM = 0;
 FKB2 = FKB2 + FINCR2;
 FLOG2 = FLOG2 - FISTEP;
 SL2 = FLOG2/FKB2;
 if (L1 < 4)
 goto_position = 35;

end

 if (goto_position == 0)

J1 = 4;

 FINCR1 = MAP(I1+J1);

 FKB1 = FKB1 + FINCR1;

 FLOG1 = FLOG1 - FISTEP;

 SL1 = FLOG1/FKB1;

 goto_position = 15;

end
end

if (goto_position == 0 | goto_position == 29)
 goto_position = 0;
 FKBM = FKBJ1 + (FKB2 - FKBJ1)*DFL;
 FLOGM = FKBM*SL2;
 FLOG2 = FLOG2-FISTEP;
 FKB2 = FKB2+FINCR2;
 SL1 = FLOG1/FKB1;
 SL2 = FLOG2/FKB2;
end

if (goto_position == 35)
 goto_position = 0;
 FINCR1 = 0;
 SL1 = -900000;
 FKBJ1 = ((FLOG1/FISTEP)*FINCR1+FKB1)/((FINCR1/FISTEP)*SL2 + 1);

22

 FKB = FKBJ1 + (FKB2 - FKBJ1)*DFL;

 FLOG = FKB*SL2;

 if (FKB >= FNB)

 goto_position = 60;

break;

end

 FKBM = FKB;

 FLOGM = FLOG;

 if (J2 >= L2)

f = 0;
 return;

end

J2 = J2 + 1;

 FINCR2 = MAP(I2+J2);

 FLOG2 = FLOG2 - FISTEP;

 FKB2 = FKB2 + FINCR2;

 SL2 = FLOG2/FKB2;

 goto_position = 15;

end

if (goto_position == 0 | goto_position == 15)
 goto_position = 0;

while (1)
 if (SL1 >= SL2)
 FKBJ2 = ((FLOG2/FISTEP)*FINCR2 + FKB2)/((FINCR2/FISTEP)*SL1 + 1);

 FKB = FKB1 + (FKBJ2 - FKB1)*DFL;
 FLOG = FKB*SL1;

 if (FKB >= FNB)

 goto_position = 60;

break;

end

 FKBM = FKB;

FLOGM = FLOG;

 if (J1 >= L1)

f = 0;

return;

end

J1 = J1 + 1;

 FINCR1 = MAP(I1+J1);

FLOG1 = FLOG1 - FISTEP;

FKB1=FKB1+FINCR1;

SL1 = FLOG1/FKB1;

else
 FKBJ1 = ((FLOG1/FISTEP)*FINCR1+FKB1)/((FINCR1/FISTEP)*SL2 + 1);
 FKB = FKBJ1 + (FKB2 - FKBJ1)*DFL;
 FLOG = FKB*SL2;
 if (FKB >= FNB)
 goto_position = 60;

break;

end

23

 FKBM = FKB;

 FLOGM = FLOG;

 if (J2 >= L2)

f = 0;
return;

end

 J2 = J2 + 1;

 FINCR2 = MAP(I2+J2);

 FLOG2 = FLOG2 - FISTEP;

 FKB2 = FKB2 + FINCR2;

 SL2 = FLOG2/FKB2;

end
end

end

if (goto_position == 60)
 goto_position = 0;
 if (FKB < (FKBM + 1e-10))

f = 0;
 return;

end

 f = FLOGM + (FLOG - FLOGM)*((FNB - FKBM)/(FKB - FKBM));

 f = max(f,0);

 return;

end

f = 0;

APPENDIX B: SOLAR CELL DEGRADATION MODULE

% Predicting Solar Cell Degradation as a Function of Radiation
% Seung Chung & Matthew Richards
% 16.851 Problem Set #3

% This module performs two tasks
% 1. Model power loss of GaAs/Ge cells following proton irradiation
% 2. Model power loss of n/p Si cells following electron irradiation

% Define Constants
P_o = 1
C = .1295
D_x = 1.295*10^9

% Input Dose of Protons
D = [10^7 10^7.5 10^8 10^8.5 10^9 10^9.5 10^10 10^10.5 10^11 10^11.5 10^12] % MeV/g

% Calculate Characteristic Curve For Proton Damage of GaAs/Ge cells
P_max = (1-C*log(1+D./D_x)).*P_o

24

% Graph P_max / P_o, the normalized maximum power of GaAs/Ge cells as a function of absorbed proton dose

figure

semilogx(D, P_max, '-');

title('Power loss of GaAs/Ge cells following proton irradiation as a function of absorbed dose')

xlabel('Absorbed dose (MeV/g)')

ylabel('P_max / P_o')

AXIS([10^7 10^12 .4 1])

hold

% Electron induced damage

% Overall equation: D_eff = D * (S_e(E) / S_e(1.0))^(n-1)

% Defining variables

D_eff = 1.0; % Measured in MeV

% Experimentally determined exponents

% n=1 for n-type silicon

% n=2 for p-type silicon, GaAs, and InP

% Calculate Characteristic Curve For Electron Damage of n/p Si cells

P_o = 1

C = 0.06593

D_x = 1.841*10^8

P_max = (1-C*log(1+D./D_x)).*P_o

% Input Dose of Electrons

D = [10^7 10^7.5 10^8 10^8.5 10^9 10^9.5 10^10 10^10.5 10^11 10^11.5 10^12]

% MeV/g

% Graph P_max / P_o, the normalized maximum power of n/p Si cells as a function of absorbed electron dose

figure

semilogx(D, P_max, '-');

title('Power loss of n/p Si cells following electron irradiation as a function of absorbed dose')

xlabel('Absorbed dose (MeV/g)')

ylabel('P_max / P_o')

AXIS([10^7 10^12 .4 1])

Hold

Table of NIEL Values for Protons and Electrons in Si, GaAs and INP

25

26

