

Certification and Avionics

Prof. R. John Hansman *MIT International Center for Air Transportation*

• Safety Targets/Standards

- □ Civil Air Carrier
- Civil General Aviation
- □ Military

FAR Part 25 FAR Part 23 Mil Spec

FAR Part 121 (JAR) FAR Part 91

Safety Components

- □ Vehicle Airworthiness
- □ Training and Operating Procedures
- □ Maintenance
- □ Culture
 - Quality Management Processes
 - Incident Reporting
 - Accident Investigation
- □ Liability

Design Philosophy

- □ Fail Safe
- □ Fail Operational

Accident Rates and Fatalities by Year

All Accidents - Worldwide Commercial Jet Fleet - 1959 through 2002

U.S.A. and Canadian Operators Accident Rates

Hull Loss and/or Fatal accidents - Worldwide Commercial Jet Fleet - 1959 through 2002

Accidents by Primary Cause*

Hull Loss - Worldwide Commercial Jet Fleet - 1993 through 2002

BOEING

Fatalities by Accident Category

Fatal Accidents - Worldwide Commercial Jet Fleet - 1993 Through 2002

Accidents and Onboard Fatalities by Phase of Flight

Hull Loss and/or Fatal Accidents - Worldwide Commercial Jet Fleet - 1993 - 2002

BOEING

17 2002 STATISTICAL SUMMARY, MAY 2003

Accident Rates by Airplane Type

Hull Loss Accidents - Worldwide Commercial Jet Fleet - 1959 through 2002

(Courtesy of Boeing Corporation. Used with permission.)

2002 STATISTICAL SUMMARY, MAY 2003

14

Hull Loss Accident Rate Per Million Departures

BOEING

** The Comet, CV880/990, Caravelle, Trident & VC-10 are no longer in commercial service, and are combined in the "Not Flying" bar.

* These types have accumulated fewer than 1 million departures.

Accident Rates by Years Following Introduction

Hull Loss and/or Fatal accidents - Worldwide Commercial Jet Fleet - 1959 through 2002

• Civil

- □ Certificate of Airworthiness (i.e. Certification)
 - Guarantee to the public that the aircraft is airworthy to some standard
- Operational Approval
 - Operating Certificate
 - **↓**Equipment
 - ♦ Procedures
 - ↓ Training

• Military

□ Procurement

• Space

□ Man Rated

Aircraft Certificate of Airworthiness

- □ Standard Type Certificate (STC)
- □ Categories
 - ♦ Air Carrier
 - Normal
 - ♦ Utility
 - Experimental
 - Rotorcraft
 - ◆ LTA
 - ♦ Others

Component Certificate of Airworthiness

- □ Engines
- □ Propellers
- □ Parts
- □ Instruments

Component (Parts & Instruments) Standards

Technical Service Order (TSO)
 Minimum Operational Performance Specification (MOPS)

Software Standards

□ RTCA DO-178B

Continued Airworthiness

- □ Inspections
- □ Maintenance

• Airline Operating Certificate - Part 121

- □ Procedures
- □ Training
- □ Airports
- □ Aircraft
- □ Management

Federal Aviation Regulations

- Part 1 DEFINITIONS AND ABBREVIATIONS
- Part 11 GENERAL RULEMAKING PROCEDURES
- Part 21 CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS
- Part 23 AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES
- Part 25 AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES
- Part 27 AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT
- Part 29 AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT
- Part 31 AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS
- Part 33 AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES
- Part 34 FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES
- Part 35 AIRWORTHINESS STANDARDS: PROPELLERS
- Part 36 NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION
- http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgWebco mponents.nsf/HomeFrame?OpenFrameSet

• Advisory Circular AC 25.1309-1A

□ System Design and Analysis

- Fail Safe
- Fail Operational
- Preliminary Hazard Analysis
- Functional Hazard Assessment
- Depth of Analysis Flowchart
 Complex System

Probability vs. Consequences

Catastrophic Accident			
Adverse Effect On Occupants			
Airplane Damage			
Emergency Procedures			
Abnormal Procedures			
Nuisance			
Normal			
	Probable	Improbable	Extremely Improbable

Descriptive Probabilities

Probability (per unit of exposu	re)		
1	, FAR	JAR	
		Frequent	
10E-3	Probable		
		Reasonably Probable	
10E-5			
10E-7	Improbable	Remote	
		Extremely Remote	
10E-9			
	Extremely Improbable	Extremely Improbable	

What is the correct unit of exposure : Flight hour, Departure, Failure

• Preliminary Hazard Analysis

• Fault Tree Analysis

- Top Down Search Presumes Hazards Known
- □ System Definition
- □ Fault Tree Construction
- Qualitative Analysis
- □ Quantitative Analysis

Event Tree Analysis

□ Bottom Up "Forward" Search - Identifies possible outcomes

• Failure Modes and Effects Analysis

- □ Probabilistic "Forward" Search
- □ Requires Failure Probability Estimates
- Requires Assumed Failures from PHA or Historical Data
- □ "Target Level of Safety"

Event Tree Example From : Leveson

5 2 3 4 Pipe Break Electric | ECCS Fission Containment Power Product Integrity Removal Succeeds P1 | Succeeds 1-P4 Fails P1 x P5 **P5** | Succeeds 1-P3 Succeeds P1 x P4 1-P5 Fails P4 Available Fails P1 x P4 x P5 P5 1-P2 Initiating Succeeds P1 x P3 Event 1-P4 Fails P1 **P3** Fails P1 x P3 x P4 P4 Fails P1 x P2 P2 Adapted from: Leveson, Nancy. Safeware: System Safety and Computers. Addison-Wesley, 1995.

A reduced event tree for a loss of coolant accident.

Fault Tree and Event Tree Examples From : Leveson

FMEA for a system of two amplifiers in parallel.

	Failure	Failure	% Failure	Effects	
Critical	probability	mode	by mode	Critical	Noncritical
А	1 x 10 ⁻³	Open	90		х
		Short	5	5 x 10 ⁻⁵ 5 x 10 ⁻⁵	
		Other	5	5 x 10 ⁻⁵	
В	1 x 10 ⁻³	Open	90		x
		Short	5	5 x 10 ⁻⁵ 5 x 10 ⁻⁵	
		Other	5	5 x 10 ⁻⁵	

Adapted from: Leveson, Nancy. Safeware: System Safety and Computers. Addison-Wesley, 1995.

- Analysis Values often of Questionable Integrity
- Drives Failure Mitigation Approaches
- Avoid Single String Failure
 - □ Cannot guarantee 10E-9
- Redundancy
 - Dual Redundant for Passive Failures

 e.g. Wing Spar

 Triple Redundancy for Active Systems

 777 Fly By Wire
 Sensors
 Processors
 Actuators
 Data Bus
 A320 Reliability Architecture by Comparison

- Flight Control computers are dual channel
 - one for control and one for monitoring
- Each processor has a different vendor for hardware & software
 - software for each processor coded in a different language

EBW_A330/A340 flight control architecture Computer / hydraulic actuator arrangement

- Conventional vs. New Technologies/Configurations
- Problem with Software and Complex Systems
- Emergent Behavior
- Air-Ground Coupling Issues

FAA 8040.4 Safety Analysis Process

Operational Reliability

• MTBF

□ Mean Time Between Failure

• MTBUR

□ Mean Time Between Unscheduled Replacement

Dispatch Reliability

Conditional Airworthiness

□ Minimum Equipment List

• Relates to Life Cycle Costs

Maintenance

Scheduled Maintenance

- □ Periodic (e.g. Annual)
- □ On Time (Time Between Overhaul) (TBO)
- □ Progressive (Inspection Based e.g. Cracks)
- □ Conditional (Monitoring Based e.g. Engines ACARS)
- □ Heavy Maintenance Checks

Unscheduled

- □ "Squawks" = Reported Anomalies
 - Logbook Entries (ACARS)
- Line Replacement Units (LRU)
- □ Airworthiness Directives, Service Difficulty Reports

• Parts Inventory

- □ Parts Tracking
- □ Commonality
 - Glass Cockpits
 - ♦ F16 Tail

What are the Key Technologies for Formation Flight

- Communications
- Navigation
- Surveillance
- Control (Station Keeping)
 - Intent StatesString Stability
- Vehicle Configuration
 - □ Aero/Performance □ Control
- Propulsion
- Degree of Autonomy
- Flight Criticality
 - □ Hardware
 - □ Software

Others

Low Observability

Generic Avionic System

Avionics Components

- Black Box (LRU)
- Power (440 AC or 28V DC)
- Cooling
- Databus (AIRINC 429, 629, IEEE486,...)
 Databus Interface
- Antenna and or Sensors
- Display Head

 - □ Dedicated Display

- Barometric Altitude
- Airspeed
- Mach Number
- Vertical Speed
- Total Air Temperature (TAT)
- Static Air Temperature (SAT)
- Angle of Attack (α)
- Angle of Sideslip (β)

