& Using Architecture Models to
Understand Policy Impacts

100% of B-TOS architectures have
cost increase under restrictive launch
policy for a minimum cost decision

i Ey A maker

* Restrictive launch policy
O Unrestrictive launch policy

launch probability
- of success, ;

From Weigel, 2002
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& Using Architecture Models to
%SXSPARC Consider Uncertainty

e N

[Martin, 2000]

From Walton, 2002
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t\s SPARC Changes in User Preferences Can be
)%N Quickly Understood
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AN . .
ﬁ&SPARC Assessing Robustness and Adaptability

* Pareto front shows trade-off of accuracy and cost
e Determined by number of satellites in swarm
e Could add satellites to increase capability

1

Utility
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AN

%&SPARC Questioning User Desires
* Best low-cost mission do only one job well
* More expensive, higher performance missions require
more vehicles
* Higher-cost systems can do multiple missions

e Is the multiple mission idea a good one?

Color scale: Life Cycle Cost, 1380 data points, grid: 75x75, density: 0.08
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E\S SPARC Understanding Limiting
AN Physical or Mission constraints
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Hits a “wall” of either physics (can’t change!) or utility (can)
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/";MJNSSPARC Integrated Concurrent Engineering (ICE)

AN

A\

* ICE techniques from Caltech and JPL

e Linked analytical tools with human experts in
the loop

* Very rapid design iterations

* Result is conceptual design at more detailed
level than seen in architecture studies

* Allows understanding and exploration of design
alternatives

A reality check on the architecture studies - can
the vehicles called for be built, on budget, with
available technologies?

Space Systems, Policy, and Architecture Research Consortium ©2002 Massachusetts Institute of Technology 35
\
N
AN
— .
—— SSPARC ICE Process (CON with MATE)
//AJ'\\\
ICE Process . .
o Leader * Directed Design
“Chairs” consist of Key system
computer tool AND attributes passed to 1
human expert MATE chair, helps to SeSSIOHS allow Very

drive design session

fast production of
preliminary designs

Mission Systems
L]
— f e~ Traditionally, design
Thermal ICE-Maker Communication tO reqUIrementS
Server . .

3 ¢ Integration with
Command 3 Atitud MATE allows utility
and Data Reliability Determination
Handling and Control :

of designs to be
Electronic - T g .
communication ebaloronineicha
Gl A assessed real time
server synchronizes actions’
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AN
%&SPARC ICE Result - XTOS Vehicle

* Early Designs had
\ excessively large fuel
: tanks and bizarre
.’ [ ] shapes

¢ Showed limits of
coarse modeling done
in architecture studies

* Vehicle optimized for
best utility - maximum
life at the lowest
practical altitude
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AN
%&SPARC SPACETUG Biprop One-Way GEO Tug

e 1312 kg dry mass, 11689 kg wet mass

* Quite big (and therefore expensive); not very
practical (?);
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— SSPARC
AN

SPACETUG Tug Family
(designed in a day)

Bipropellant

Wet Mass: 11689 kg

Electric — One way

we

Wet Mass: 997 kg
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Cryogenic

Wet Mass: 6238 kg

Electric — Return Trip

E
it
Wet Mass: 1112 kg
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AN Learning from the ICE results:
Mass Distribution Comparison

AADACS (dry)  Pressurant Link
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C&DH
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Power
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Propulsion (dry)
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Propelant
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Structures &

Mechanisms
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Mating System
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Electric Cruiser
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Link_ Pressurant
C8DH_ gy, %
%

Propulsion (df

R = Structures &

ADACS (dry) Mechanisms
%

Mating System
%

Propellant
8%

Biprop one-way

* Low ISP fuel requires very large mass fraction to do mission

* Other mass fractions reasonable, with manipulator system,
power system, and structures and mechanisms dominating

©2002 Massachusetts Institute of Technology
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AN

ﬁ&SPARC More Than Mass Fractions

LEO Tender 1 e
mass summary o« =
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|Ss|ect solar array material: ITripIe Jun(ﬁ‘)n (lnGaP/GaM/Ge)l ﬁ
Minimum efficiency’ 24.5]%
Maximum efficiency 28.0|%
i 28.0|C
Te loss 0.5|%/deg C
Performance degredation 2.6|% / year
Minimum temperature 0.5[C
Maximum temperature 85.0|C
Energy density 25.0|W / kg
Solar array mass 150.6685167|kg
Total solar array area 9.965098159|m"2
# of solar arrays 2%
Individual solar array area 4.98254908[m"2
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ﬁ&SPARC Trade Space Check
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& SPACETUG
ﬁ&SPARC LEO Tender Family

LEO 1 - 1404 kg wet LEO 2 - 1242 kg wet

=4 -

LEO 4 - 1782 kg wet LEO 4A - 4107 kg wet
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ﬁ&SPARC Tenders on the tradespace
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AN
%&SPARC What you will learn

» Trade space evaluation allows efficient quantitative
assessment of system architectures given user needs

 State-of-the-art conceptual design processes refine
selected architectures to vehicle preliminary designs

* Goal is the right system, with major issues understood
(and major problems ironed out) entering detailed
design
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