Systems Microbiology 1.084J/20.106J PROBLEM SET #3 – Due Monday Oct. 23rd

Problem 3.1

- a. Describe the stringent response, and at what level and what components of cellular activity it regulates.
- b. Most biosynthetic operons need only be under negative control for effective regulation, while most catabolic operons need to be under both negative and positive control. Why might this be?
- c. Why are promoters from *E. coli* under positive control not close matches to the promoter consensus sequence for *E. coli*?
- d. The attenuation control of some of the pyrimidine biosynthetic pathway genes in *E. coli* actually involves coupled transcription and translation. Can you propose a mechanism whereby the cell could somehow make use of translation to help it measure the level of pyrimidine nucleotides?
- e. How could quorum sensing be considered a regulatory mechanism for conserving cell resources?

Problem 3.2

- a. How does homologous recombination differ from site-specific recombination?
- b. What does an F^+ cell need to do before it can transfer chromosomal genes?
- c. What do you think are the most useful transposons for isolating a variety of bacterial mutants? Why are such transposons so useful for this purpose?
- d. Describe why the discovery and use of transformation and the use of the F plasmid, were important milestones in the history of genetics. What insights did they contribute?
- e. Describe three different ways that foreign DNA can enter the cell. How can homologous recombination favor the integration of more than a single or a few genes into the chromosome?

Problem 3.4

- a. Explain why in generalized transduction one always refers to a transducing particle but in specialized transduction one refers to a transducing virus or phage.
- b. What are the essential characteristics of a cloning vector? What characteristics of plasmids make them especially useful as vectors for molecular cloning? What characteristic(s) of the F plasmid makes it less useful for use *in vitro*?
- c. What are the general properties of insertion elements? Class II transposons?

Problem 3.5

Five Hfr strains A through E are derived from a single F^+ strain of E. coli. The following table shows the time of entry (in minutes) of the first 5 genetic markers observed in interrupted mating experiments. Please answer a-c, below, based on the data.

STRAIN A		STRAIN B		STRAIN C		STRAIN D		STRAIN E	
mal^+	1	ade^+	3	pro^+	3	pro^+	10	his ⁺	7
str ^s	11	his ⁺	28	met^+	29	gal^+	16	gal^+	17
ser ⁺	16	gal ⁺	32	xyl^+	32	his ⁺	26	pro^+	23
ade ⁺	36	pro^+	44	mal^+	37	ade ⁺	41	met ⁺	49
his ⁺	51	met ⁺	70	str ^s	47	ser ⁺	61	xyl^+	52

a) Draw a map of the F⁺ plasmid, showing the positions of all the genes relative to the origin, and their distance apart in minutes.

- b) Show the insertion point and orientation of each Hfr strain.
- c) In using each of these strains, which gene would you chose to use as a marker, to get the greatest number of "exconjugants" (eg. recipient cells that have successfully received an F plasmid)?