Microbial growth control

Nov 13, 2006 Ch. 20

Outline

- 1. Physical antimicrobial control
- 2. Chemical antimicrobial control
- 3. Antimicrobial agents used in vitro
- 4. Control of viruses and eukaryotic pathogens
- 5. Antimicrobial drug resistance and drug discovery

Physical antimicrobial control

- Heat sterilization
 - Autoclave
 - Pasteurization
- Radiation sterilization
 - Ionizing radiation
- Filter sterilization
 - Depth filters
 - Membrane filters

Measuring heat sterilization

Death is a first Survival Fraction (log scale) 100 order function Decimal reduction time (D) • Time required for a -50C 10-fold reduction in 10 population density at a given temp. is 70C 60C the decimal reduction time (D) 0.1 • Thermal death time 10 2030 50 40can also be used Time (min)

Figure by MIT OCW.

Autoclave

- 15 psi yields 121°C
- Kills bacterial spores within 15 min

Autoclave images removed due to copyright restrictions. See Figures 20-3a and 20-3c in Madigan, Michael, and John Martinko. *Brock Biology of Microorganisms*. 11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.

 Larger volumes of liquid require extended cycle times

Pasteurization

- Reduces microbial population in milk and other heat-sensitive liquids
- Uses a heat exchanger
- Controlled flow rate and temp.
- Flash pasteurization is 71°C for 15 seconds
- Controls Listeria, Campylobacter, Salmonella, E. coli, etc.

Photograph of jugs of milk being pasteurized removed due to copyright restrictions.

www.discoveriesinmedicine.com

Radiation sterilization

- UV limited to disinfection of exposed surfaces and some water applications
- Ionizing radiation used for medical supplies and food
- Typically x-rays or γ-rays from ⁶⁰Co or ¹³⁷Cs source

Table showing the radiation sensitivity of microorganisms and biological functions removed due to copyright restrictions. See Table 20-1 in Madigan, Michael, and John Martinko. *Brock Biology of Microorganisms*. 11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.

Filter sterilization

- Depth filters trap particles within the layers of the mat
 - Pre-filters
 - High-efficiency particulate air (HEPA) filters
- Membrane filters are used for heatsensitive liquids

Filter images removed due to copyright restrictions. See Figure 20-6b in Madigan, Michael, and John Martinko. *Brock Biology of Microorganisms*. 11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.

Chemical growth control

- Selective toxicity
- Bacteriostatic
 - Agents often binds reversibly to ribosomes
- Bacteriocidal
- Bacteriolytic
 - Detergents and cell wall synthesis inhibitors

Figure by MIT OCW.

Measuring antimicrobial activity

- Minimum inhibitory concentration (MIC)
- Tube dilution technique
- Agar disc diffusion
- Both require standardization

Photograph showing the minimum inhibitory concentration in a series of increasingly diluted test tubes removed due to copyright restrictions. See Figure 20-10 in Madigan, Michael, and John Martinko. *Brock Biology of Microorganisms*. 11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.

www.oceanexplorer.noaa.gov

Chemical agents used externally

- Control of non-pathogenic microbes
- Control of pathogenic microbes in the environment
 - Sterilants
 - Cold sterilization
 - Ethylene oxide gas, sodium chlorite solution
 - Disinfectants
 - Decontaminate floors, tables, etc.
 - Antiseptics can be used topically

Table of antiseptics, sterilants, disinfectants, and sanitizers removed due to copyright restrictions. See Table 20-4 in Madigan, Michael, and John Martinko. *Brock Biology of Microorganisms*. 11th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. ISBN: 0131443291.

Antimicrobials used in vivo

- Synthetic drugs
- Growth factor analogs
 - Sulfa drugs
 - Sulfanilamide is an analog of para aminobenzoic acid, a precursor for folic acid
 - Bacteria synthesize folic acid
 - Sulfamethoxazole plus trimethoprim is used clinically

More synthetic antimicobials

• Isoniazid

- Only effective against Mycobacterium tuberculosis
- Nicotinamide analog
- Inhibits mycolic acid synthesis
- Quinolones
 - Inhibit DNA gyrase
 - Nalidixic acid
 - Fluoroquinolone derivatives Ciprofloxacin

Figure by MIT OCW.

Antibiotics

- Broad-spectrum vs. narrow spectrum
- Targets include ribosomes, the cell wall, the cytoplasmic membrane, and RNA Pol
 - 1. Penicillins and cephalosporins
 - 2. Aminoglycosides
 - 3. Macrolide antibiotics
 - 4. Tetracyclines

β -lactam antibiotics

- Penicillin G first antibiotic discovered
 - Highly selective
 - Primarily active against gram positive bacteria
 - Many semisynthetic pencillins are effective against gram negative bacteria
 - Sensitive to β -lactamase
- Bind irreversibly to penicillin-binding proteins (transpeptidases) and prevent cross-linking of peptidoglycan chains
- Cephalosporins have broader spectrum and are resistant to β -lactamases

Aminoglycosides

- Produced by bacteria and active against bacteria
- Inhibit protein sythesis (305 subunit)
- Useful clinically against gram negative bacteria
- Neurotoxicity and nephrotoxicity
- Used as fallback; not initial drugs of choice

Macrolides and tetracyclines

- Large lactone rings
- Important group (11% of all antibiotics produced worldwide)
- Erythromycin is commonly used in patients allergic to penicillin
- Inhibit 50S subunit of the ribosome
- Tetracyclines
 - Inhibits 305 subunit of the ribosome
 - Still widely used; growing problem of resistance

Antimicrobial drug resistance

- Acquired ability to resist effects of a chemotherapeutic to which it is normally susceptible
- Common mechanisms
 - 1. Lack structure drug targets
 - 2. May be impermeable to drug
 - 3. Organism may be able to modify drug to an inactive form
 - 4. Organism may modify the target itself
 - 5. Organism may develop a new pathway
 - 6. Organism may be able to pump out the drug

R plasmids

- Most drug resistant bacteria isolated from patients contain drug resistance genes on plasmids
- Many R plasmids encode enzymes that inactivate drugs
- R plasmids predate medical use of antibiotics
- Widespread emergence of multi-drug resistance

Resistance to all known drugs...

 Methicillinresistant
Staphylococcus aureus (MRSA)

 Vancomycinresistant
Enterococcus (VRE)

Figure by MIT OCW.