
20.181 Lecture 5
Contents

• 1 Downpass (cont.)
o 1.1 Sankoff Downpass Algorithm
o 1.2 Downpass: can we stop there?

• 2 Fitch's upPass

Downpass (cont.)
The tree we were working on last time:
Now we're going to try to code up the downpass.

1. So now we want to know: what is the sequence at this ancestor node, that we can't
observe? We'll try all four possibilities, and calculate the penatly associated with
each of those possibilities are.

2. Remember that the good solution with the fibonacci series was to pass all the
information back each time so that we don't have to repeat calculations!

3. We left off at the root node, where we said there were 64 possibilities.
4. So let's go through this by hand and try to write pseudo code for a function that

will do the same thing.

5. What we're going to do, which might seem odd at first, is to pass the node's
identity (nodeSeq) (A,C,G,or T) into the function as if we know it. Our function
will look at this one possibility and return one column of the cost vector. We will
pass to this function each possibility, one by one.

Sankoff Downpass Algorithm

(See lecture 8 notes for a more efficient way of implementing Sankoff downpass)

def sankoff(tree,nodeSeq):

min = inf #initialization
if tree is a leaf: #stop condition
if tree['data'] == nodeSeq:
return 0
return inf
for leftSeq in [A,C,G,T]: #now we're at a node with
two children
for rightSeq in [A,C,G,T]: #we have to try all 16
possibilities here
sum= cost(nodeSeq,leftSeq,rightSeq) #cost is some
function that looks up the cost in the table
sum += sankoff(tree['left'],leftSeq) #we have to
remember to pass the cost along!
sum += sankoff(tree['right'],rightSeq)
if (sum < min):
min = sum
return min

def sankoffDownpass(tree): #we don't know what the sequence
is at the root

for seq in [A,C,G,T]:
if sankoff(tree,seq) < min:
min = sankoff(tree,seq)
minSeq = seq
return min

Downpass: can we stop there?

• So far we're only passing the best score obtained at each subtree down the tree to
the root.

• The downPass algorithm, which you'll implement in HW4, finds the most
parsimonious sequence at the root node.

• Why does it find the most parsimonious sequence only for the root ?

•
o Think about what the difference is between the root and the other internal

nodes:

the root doesn't have any parents -- only children.

• So far, all our information flows down tree, and we use it to make inference about
older and older internal nodes. That's why the inference at the root the best

possible guess we can make; it has all the information from everywhere on the
tree. But the inferences we've written at the internal nodes are NOT YET correct-
these internal nodes only have part of the information on the tree.

• What if we added an outgroup, such that what was the root before is now an
internal node

o would this change our guess about nucleotides that are likely at the old
root?

yes! because we would have additional information that had not been taken into
account in our prior best guess

Fitch's upPass
We'll pass the information back up from the root node to the other internal nodes in order
to decide what their most likely sequences were!

• computer science jargon: three ways to traverse trees
1. pre-order: do some operation, then call left subtree, then call right subtree

like typing into a calculator: + 5 3

2. in-order: L, op, R

like typing into a calculator: 5 + 3

3. post-order: L, R, op

like typing into a calculator: 5 3 +

	20.181/Lecture5
	Contents
	Downpass (cont.)
	Sankoff Downpass Algorithm
	Downpass: can we stop there?

	Fitch's upPass

