
Shell, Emacs, & Python (oh my!) Cheat Sheet


Lawrence David 

09.07.06 

1 Shell 

To run these commands, only type in the part after the dollar sign. Replace both 
arguments and square brackets (don’t leave square brackets in). 

$ cp [oldfile] [newfile]

$ mv [oldfile] [newfile]

$ rm [oldfile]

$ mkdir [newdir]

$ rm -r [olddir]

$ cd [destination]

$ cd ..

$ ls

$ cat [file]

$ more [file]

$ emacs [file]

$ python [file]


copies 
moves 
deletes (no undo!) 
new directory 
remove directory 
change directory 
up one directory 
list contents of directory 
print every line of file 
print one screen of file 
edit file 
execute python file 

1




2 Emacs 

Below, ’C’ is short for the control key and ’M’ denotes the meta key. On most 
operating systems, the meta key defaults to the Esc button; however, you can usually 
futz with your terminal application to map meta to something more ergonomically 
reasonable, like the alt button. 

To execute one of these commands (e.g. C-d), hold down control, press d with a 
free finger, and then release control. To execute something like C-x,C-s, hold down 
control, press x, then press s, and finally release control. 

C-d 
M-d 
C-k 
M-k 
C
C-x,C-c 
C-x,C-w 
C-x,C-s 
C-s 
M-% 
C-space 
M-w 
C-w 
C-y 
C-a 
C-e 
M-¡ 
M-¿ 
C-v 
M-v 

delete one character 
delete one word 
delete one line 
delete one paragraph 
undo 
save and quit 
save as 
save 
find as you type 
find and replace 
set mark 
copy from mark to current position 
cut from mark to current position 
paste 
jump to beginning of line 
jump to end of line 
jump to beginning of document 
jump to end of document 
page down 
page up 

2




3 Python 

3.1 Comments 

Comment out lines with the pound-sign: #. 

3.2 Lists 

List is python-speak for array or ordered collection of items. 

L = []

L = [expr1,expr2,...]

L.append(x)

L.remove(x)

L[i]

L[0]

L[-1]

L[0:2]

L.extend(M)

L.reverse()

L.sort()

len(L)


initiate a list 
list creation 
add an item x 
remove first occurence of item x 
return i’th item of list 
return first item of list 
return last item of list 
return first 3 items of list 
merge list M into L 
flip ordering of list 
sort items of L 
return length of list 

3.3 Dictionaries 

Dictionary is python-speak for hash table or data structure where values are stored 
according to keys 

D = initiate a dict 
D[k] = i store item i in dict with key k 
D = k1:v1, k2:v2, ... another way to populate dict 
D.has key(k) return true if k is a key in D 
D.keys() return a list of keys 
D.values() return a list of values 

3




3.4 Logic 

a == b 
a > b 
a < b 
a and b 

return true if a equals b 
return true if a greater than b 
return true if a greater than b 
return true if both a and b are true 

a or b return true if either a or b are true 
not a return true if a is false 

3.5 Loops 

Be sure to indent all lines of code to be executed in a loop! Note that you don’t need 
any brackets or end statements. 

for i in L: 
print i 

for i in range(0,len(L)): 
print L[i] 

while i == True: 
print i 

3.6 Conditionals 

Like loops, code executed within conditions must be indented! 

if i == 0: 
print ”i equals 0” 
elif i == 1: 
print ”i equals 1” 
else: 
print ”who knows what i equals” 

break will terminate the loop encompassing the conditional 
continue will skip encompassing loop to next iteration 

3.7 Reading and Writing to Files


f = open(’filename’,’r’) open file for reading 
f = open(’filename’,’w’) open file for writing 
f.close() close a file 
f.read() return the file’s entire contents in a string 
f.readlines() return a list containing each line of the file 
f.write(s) write string s to file f 

4




3.8 Math 

For commands that are preceded by ’math’, you will need to import the math module. 

import math imports math module 
a*b get product of a and b 
a/b divide a by b 
a+b sum a and b 
a-b difference of a and b 
a += b same as a = a + b 
math.log(n) take log of n 
math.exp(n) e raised to n 

3.9 Defining Functions 

Again, you’ll need to indent all the function’s code. 

def myfunction(arg1,arg2): 
myprod = arg1*arg2 
return myprod 

3.10 Modules 

Note that imported modules need to live in Python’s path. If that doesn’t make any 
sense to you, it means that modules you write or download from online should be 
placed in the same directory as your code, to prevent import errors. 

import m import module m 
m.myfun() call function ’my fun’ in m 

3.11 Miscellany


print string display string on terminal output 
import sys; sys.argv[1] first command-line argument 

5



