Muscle mechanics outline

- Types of muscle
- Muscle anatomy
- Function: macro, micro
- Motor unit
- Applications
 - Tissue engineering
 - Basic studies
 - Drug screening
 - Biobots
- Other motile systems

Types of muscle: Skeletal (striated) and smooth muscle

Image by MIT OpenCourseWare.

Cardiomyocytes

Courtesy of Jan Lammerding, Harvard Medical School.

Jan Lammerding

Dimensions ~ 30x10 µm; Cross-sectional area ~ 300 µm²

Total force = ??

Skeletal muscle

Figure of the structure of a skeletal muscle removed due to copyright restrictions.

Detailed structure of a single skeletal muscle cell

Figure of the detailed structure of a single skeletal muscle cell removed due to copyright restrictions.

Macro behavior: Temporal patterns of muscle contraction

- Single twitch
- Periodic sequence of excitations
- Fused tetanus (F_{max})

Tension-length curves for a muscle fiber (relaxed and maximally stimulated)

Dynamic: Hill's equation Empirically determined force-velocity relationship obtained from macroscopic measurements

Figure removed due to copyright restrictions.

Archibald Hill, Nobel Prize in Physiol, 1922.

$$\frac{v}{v_{\text{max}}} = \frac{1 - (F/F_{\text{max}})}{1 + C(F/F_{\text{max}})}$$
$$\frac{vF}{v_{\text{max}}F_{\text{max}}} = \frac{1 - (F/F_{\text{max}})}{(F_{\text{max}}/F) + C}$$

 $\sigma_{max} \sim 2 \ x \ 10^5 \ Pa$

 $\sim 30 \text{ cm/s}$

v = *velocity of shortening*

8

Micro: The sliding filament model

in separate, back-to-back papers by *A. Huxley* & *Niedergerke* and *H. Huxley* & *Hanson*, *Nature*, 1954

3 2 NATURE No. 4412 May 22, 1954 trolled o STRUCTURAL CHANGES IN path-diffe MUSCLE DURING CONTRACTION widths of ment (Fig Interference Microscopy of Living Muscle film by tube at Fibres stimulate these flas By A. F. HUXLEY and DR. R. NIEDERGERKE* Passive Physiological Laboratory, University of Cambridge changed] 40 4 . 9 . . .

Changes in the Cross-Striations of Muscle during Contraction and Stretch and their Structural Interpretation

By DR. HUGH HUXLEY* and DR. JEAN HANSON

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts

Phase contrast images of myobrils

10µ

© Nature Publishing Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use. Source: Huxley, Hugh, and Jean Hanson. "Changes in the Cross-striations of Muscle during Contraction and Stretch and their Structural Interpretation." *Nature* 173 (1954): 973-6.

9

Thick and thin filaments slide past one another during contraction

Figure of relaxed and contracted muscle removed due to copyright restrictions. See a similar image on wikipedia.

Skeletal muscle contains a regular array of actin and myosin

Videomicrograph of contracting muscle

Motor Speeds (assemblies)

Motor type	speed	in vivo (nm/s)	in vitro(nm/s)	in vitro ATPase (s ⁻¹)
Myosin II (skeletal muscle)		6000	8000	20
Myosin II (smooth muscle)		200	250	1.2
Myosin V (vesicle transport)		200	350	5
Conv. Kinesin (axonal transp)		1800	840	44
Nkin (sec. Vesicle transp.)		800	1800	78
BimC/Eg5 (Mitosis/meisos)		18	60	2
Dyneins (cytoplasmic)		-1100	-1250	2

Speed in vivo = cell/extracts, motion of motor relative to filament w/o a load. Positive values indicate movement toward positive end of filament.

Speed in vitro = purified motors at high ATP concentrations.

ATPase = max rate of hydrolysis per head per sec, measured at high ATP, filament concentrations.

Forces generated by skeletal muscle

Figure of relaxed and contracted muscle removed due to copyright restrictions. See a similar image on wikipedia.

Striated skeletal muscle

Structure of activating mechanism

Skeletal Muscle Fiber

Courtesy of Blausen.com staff. "Blausen Gallery 2014". Wikiversity Journal of Medicine. DOI:10.15347/wjm/2014.010. License: CC BY.

A rise in cytosolic Ca²⁺ triggers muscle contraction

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. **Step 1**: An excitation signal travels along the efferent nervous pathways towards the muscle.

Step 2: The excitation signal de-polarizes the cell membrane. This allows spread of the action potential along the sarcoplasmic reticulum.

Step 3: The potential triggers the release of calcium into the sarcoplasmic matrix surrounding the filaments of the motor unit.

Step 4: This removes the hindrance (tropomyosin) for interactions between actin and myosin filaments through chemical, mechanical, and electrostatic actions.

Step 5: The stepping action of myosin along the adjacent actin filament causes the two to slide relative to each other, reducing the length of the sarcomere, producing contraction.
Step 6: Sequestration of calcium ions in the sarcoplasmic reticulum (ATP-dependent) switches the contraction activity off.

Figures removed due to copyright restrictions.

http://www.sci.sdsu.edu/movies/actin_myosin.html

Living Machines: Simple Biobots

Chan, Sci Reports, 2012

Figure removed due to copyright restrictions.

Williams et al., Nat Comm, 2014

© The authors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Chan, Vincent, et al. "Development of Miniaturized Walking Biological Machines." *Scientific Reports* 2 (2012).

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Nawroth, Janna C., et al. "A Tissue-engineered Jellyfish with Biomimetic Propulsion." *Nature Biotechnology* 30, no. 8 (2012): 792-7.

Naworth et al., Nat Biotech, 2012

Muscle-on-a-chip systems

1. C2C12 cells suspended in a collagen-matrigel matrix are seeded in the right gel region, and the adjacent filled with medium

 The myoblasts compact the gel and differentiate into multinucleated myotubes over ~10 days

3. A plain gel is injected around the myotubes and the adjacent gel region is filled with a gel containing motor neurons.

4. Finally, motor neurons extend axons toward the muscle construct

Gel

regions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Boudou, Thomas, et al. "A Microfabricated Platform to Measure and Manipulate the Mechanics of Engineered Cardiac Microtissues." *Tissue Engineering Part A 18*, no. 9-10 (2011): 910-19.

Legant, W. R. et al (2009). *PNAS*, 106(25), 10097-102.

Courtesy of Christopher S. Chen. Used with permission. Source: Legant, Wesley R., et al. "Microfabricated Tissue Gauges to Measure and Manipulate Forces from 3D Microtissues." *Proceedings of the National Academy of Sciences* 106, no. 25 (2009): 10097-102.

Courtesy of MIT. Used with permission. Source: Sakar, Mahmut Selman, et al. "Formation and Optogenetic Control of Engineered 3D Skeletal Muscle Bioactuators." *Lab Chip* 12, no. 23 (2012): 4976.

Optogenetics

- Channelrhodopsins are light-activated ion channels (discovered in green algae that respond to light).
- Can be used to activate neurons or muscle.

© A2-33. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Millencolin. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Light-sensitive cardiomyocytes demonstrate coordinated actuation

[[]Sakar et al. 2012]

Courtesy of MIT. Used with permission. Source: Sakar, Mahmut Selman, et al. "Formation and Optogenetic Control of Engineered 3D Skeletal Muscle Bioactuators." *Lab Chip* 12, no. 23 (2012): 4976.

Optogenetic control of mESC-derived motor neurons

Homologous recombination

-

Optogenetic control of the motor neurons

FACS sorting

Pluripotency and ChR expression validation

Motor neuron differentiation

Confocal imaging allowed for the verification of the 3D outgrowth of the motor axons

Optogenetic control of the NMJ in 3D

What you should know

- Gross and microscopic structure of muscle
- Different types of muscle
- Twitch, summation and tetanus
- Sarcomeric structure and striations
- Sliding filament theory basic concepts
- Forces generated
- Connecting micro and macro behavior
- Events during cross-bridge cycling
- Mechanisms of muscle activation and control

20.310J / 3.053J / 6.024J / 2.797J Molecular, Cellular, and Tissue Biomechanics $\ensuremath{\mathsf{Spring}}\xspace$ 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.