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Lecture Notes for 20.320 Fall 2012 

Molecular Design Part 1 
 

Ernest Fraenkel 

 

 
In previous lectures we have examined the relationship of structure to energy and the 
basis for specificity in protein-ligand interactions.  We will now see how the two topics 
can be brought together for the purpose of design.  We will explore the techniques 
needed to design mutations that can alter specificity.  Very similar methods were used 
to design the mutant GCSF with increased potency that we described in the introduction 
to this section of the course.  Finally, we will examine how computation analysis of non-
protein ligands can aid in drug-discovery. 

A Crisis in the Pharmaceutical Industry. 

The pharmaceutical industry gross income is approximately $600 billion each year and 
companies pour lots of money back into research.  (I’ve seen estimates as high as 20% of 
sales).  Nevertheless, in the last few years there have only been about 20 new chemical 
entities approved as drugs.  At this rate, the industry is becoming unsustainable. 

Why are so few new drugs invented each year?  The main problem is not at the level of 
initial discovery, but the high rate of attrition. 

• Only one in 5,000 compounds discovered in pharma research ever gets to a 
clinical trial.   

• Of the compounds that are tested, only about 1/15 becomes a commercial drug. 

 

Can new technologies changes these numbers?  Genomics and systems biology are 
increasing our ability to find the molecular origin for diseases.  These techniques can help 
identify good targets, but the down-stream steps in drug discovery are still slow and yield 
the high rates of failure.  In this section we will explore how computational techniques 
can help in predicting the interaction of potential drugs with on-target and off-target 
proteins, and how these methods could dramatically improve drug discovery. 
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In the first part of this topic, we will learn how to predict the effect an amino-acid 
mutation will have on the interaction of a protein ligand with its target.  In the second part 
we will explore non-protein ligands. 

Part 1:  Designing Mutations in Protein Ligands. 

Overview of this topic: 

1. We are interested in predicting the free energy change for a mutated complex.  
Using thermodynamic cycles allows us to identify “alchemical transitions” from 
which it is possible to estimate the energy change. 

2. To compute the energy of these transitions we need to repack the protein’s side 
chains to account for the mutation. 

3. We convert this problem into a combinatorial problem by using the concept of 
“rotamers.” 

4. We apply a sampling technique called the metropolis algorithm to solve this 
extremely large combinatorial search problem. 

 

1.  Predicting the free energy change of a complex. 

Let’s consider a relatively simple case:  we want to find a mutation in a protein ligand 
that increases its affinity for a receptor.  Let’s start by writing the equilibrium reactions: 

R + L   C has a free energy of ΔG wt,bind 

R +Lm  C* has a free energy of ΔG mut, bind 

Notice the notation:  the superscript refers to the state that isn’t changing in the 
reaction (wt vs. mutant) and the subscript refers to the reaction. 

We define ΔΔG =  ΔG mut, bind- ΔG wt,bind  

If we can predict how a mutation affects ΔΔG then we can find a mutation that increases 
affinity.  How can we predict this value?  We cannot simulate the binding reaction for 
each protein because of the difficulty in modeling solvation and conformational 
changes.   

The solution to the problem comes from the realization that free energy is a state 
function, and thus is independent of path.  So let’s re-examine our problem and 
consider the transition from the wild-type to the mutant ligand.  This transformation 
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isn’t exactly a chemical reaction, it doesn’t conserve mass.  This is frequently called an 
alchemical reaction – a reference to alchemy. 

 

  ΔG wt,bind 

R + L   C  

    ↨            ↨ 

R +Lm  C* 

 ΔG mut, bind 

 

The horizontal reactions are the 
physically reasonable ones, but they are hard to evaluate computationally because they 
depend on solvent effects, structural changes, etc.  The vertical transitions couldn’t 
happen in reality, but we will see that they are very easy to compute – under certain 
assumptions.   

So we can assign a free energy to the vertical transitions as well:   

ΔG wt,bind 

R + L   C  

ΔG unb, mutate    ↨            ↨  ΔG bnd, mutate 

R +Lm  C* 

ΔG mut, bind 

Because free energy is a state function, it has to sum to zero if I go around this cycle.  So 
we get ΔG wt,bind +ΔG bnd, mutate-ΔG mut, bind - ΔG unb, mutate = 0 

or    ΔG bnd, mutate- ΔG unb, mutate = ΔG mut, bind - ΔG wt,bind  

Now recall that ΔΔG =  ΔG mut, bind- ΔG wt,bind  

So, there are two ways to calculate ΔΔG, the transition we can simulate, if our 
assumptions are valid, and the experimental direction that we can measure but not 
simulate.   

 

“The Alchemist” by Pieter Bruegel the Elder 
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This suggests that we can figure out the change in affinity of our mutation by computing 
the energy of the two alchemical reactions – the kind that is easiest for the computer to 
solve. 

Under the assumption that the overall structure is the same in the wild-type and the 
mutant complex our procedure can be relatively simple. 

Each term in ΔΔG =ΔG bnd, mutate- ΔG unb, mutate corresponds to two structures in which all 
the atoms are the same except for the side-chain of the mutated amino acid.  Let’s 
assume we are dealing with a Alanine to Glycine residue. 

What atoms are changing? 

Do we need to compute ΔG unb, mutate?  Yes, as there can be differences in the energy of 
the wt and mutant protein even in isolation.  These differences can arise from loss of 
van der Waals interactions with other atoms in the ligand and changes in solvation. 

We can compute ΔG unb, mutate by relating it to the potential energy functions we looked 
at in previous lectures: 

ΔG unb, mutate =Uunb, gly – Uunb, ala 

where U is the potential energy, which is the sum of the vdW and electrostatic terms. 

Now recall that we sum over all atomic pairs, but since we are taking the difference 
between two potential energy functions, we only need to consider those terms that 
differ between the two states. 

For example, if we mutate residue 10 in protein P, which has N residues, the only terms 
we need to consider are 
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which represents the interactions of our new methyl group with all the other residues in 
the protein. 

What are the additional terms in ΔG bnd, mutate? 

 

(where the interacting ligand has M residues). 
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2. Repacking the protein’s side chains. 

What happens if we replace a small amino acid such as alanine with a larger, charged 
amino acid, say lysine?  The new residue needs to go somewhere, and presumably the 
rest of the structure has to change to accommodate it.  So there are now two problems.  
We need to recompute the energy terms we saw before, but only after we figure out 
where the new atoms go.  Even if there is some space into which we could put the side 
chain without introducing any steric clashes, we cannot assume that that position is OK.  
Instead, we need to find the conformation that minimizes of the free energy for the 
mutated protein. 

In the most general case, this is not a problem we can solve.  If the mutated side chain 
causes a tremendous rearrangement of 
the protein, the new structure will not 
be predictable using current methods.  
Fortunately, this is rarely the case.  
Rather, we need to worry about 
residues near the mutation.  Typically, 
we can assume that the backbone 
changes little.  So our main challenge is 
to figure out how a set of side chains 
near the mutation repack  (see Figure).  

 

 

We will make a few modeling assumptions to make the problem easier.  First, rather 
than trying to solve this problem by determining the exact coordinates of each atom, 
we’ll make the approximation and assume that bond lengths are fixed and model using 
rotations around the side chain bonds.  This vastly reduces the space of all possible 
conformations.  We will then use the Metropolis algorithm to find a low energy 
combination for the side chains. 

3. Rotamers 

In addition to fixing the bond lengths, we can further simplify the problem by treating 
bond rotations as discrete rather than continuous.  Ponder and Richards (1987) were 
the first to make the observation that the set of side-chain angles in protein structures 
tend to cluster, and this observation has held up now that many more structures have 
been solved.   

mutation 

other 
residues to 
be 
repacked 
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In the observed protein structures the angles can deviate from these ideal positions, but 
we can still think about the choices as discrete rather than continuous.  We often call 
the different states that differ only by the rotation of a bond as rotamers, short for 
rotational isomer. 

Using rotamers allows us to simplify the repacking problem from a continuous 
optimization problem to a combinatorial one:  Which combination of rotamers has the 
lowest energy.  Nevertheless, the problem is still extremely complex.  If I consider 20 
residues around the site of the mutation and, on average, each residue can occupy one 
of ten different rotamers there are 1020 states to consider, and in a realistic situation we 
probably want to sample more states for more residues.   

4. Combinatorial Optimization 

The problem with any attempt to optimize a function with hundreds variables is that 
you are very likely to find only a local energy minimum.  But there are algorithms that 
will help us explore complicated surfaces and find “non-local” minima.  These algorithms 
still don’t guarantee they will get the global minimum, but they have a larger radius of 
convergence.  The basic ideas behind the algorithms are very general, and you will see 
them in lots of other contexts.   
 

 

Observed combinations of χ1, χ2 and χ3 angles for 
methionine (from [6]). 

 

Rotatable bonds in side chains (from [3]) 

© Elsevier B. V. All rights reserved. This content is excluded from © Academic Press. All rights reserved. This content is excluded
our Creative Commons license. For more information, see from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/. http://ocw.mit.edu/help/faq-fair-use/. 
Source: Ponder, Jay W., and Frederic M. Richards. "Tertiary Temp- Source: Kuszewski, John, Angela M. Gronenborn, et al. "Impro-
lates for Proteins: Use of Packing Criteria in the Enumeration of vements and Extensions in the Conformational Database Poten-
Allowed Sequences for Different Structural Classes." Journal of tial for the Refinement of NMR and X-ray Structures of Proteins
Molecular Biology 193, no. 4 (1987): 775-91. and Nucleic Acids." Journal of Magnetic Resonance 125, no. 1

(1997): 171-7.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1016/0022-2836(87)90358-5
http://dx.doi.org/10.1016/0022-2836(87)90358-5
http://dx.doi.org/10.1016/0022-2836(87)90358-5
http://dx.doi.org/10.1006/jmre.1997.1116
http://dx.doi.org/10.1006/jmre.1997.1116
http://dx.doi.org/10.1006/jmre.1997.1116
http://dx.doi.org/10.1006/jmre.1997.1116
http://ocw.mit.edu/help/faq-fair-use/
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To understand it we need to introduce two concepts:  1. Monte Carlo techniques and 
2. Metropolis sampling. 

Those of you who took 6.00 will be familiar with Monte Carlo search.  This technique 
allows us to compute a complicated function by randomly sampling the underlying 
variables.  In 6.00 you used it to compute lots of things, including the value of pi and 
games of chance.  

In 6.00 you studied “guess and check” algorithms.  In these algorithms, you generate 
random values of the parameters and test if they are good.  A guess-and-check energy 
optimization algorithm in 1D would randomly sample x-coordinates, compute the 
energy and treat the lowest value as the minimum.  This is a type of Monte Carlo 
algorithm.  It relies on random selection of a state.  These algorithms are named after 
the city in Monaco that is famous for gambling casinos. 

This guess-and-check approach can only work if a random search has some hope of 
finding an optimal or near-optimal solution.  In 1D problem, depending on how close 
you need to get to the minimum, you might be OK.   But in our real-setting, the 
combinatorial complexity is too much for such an approach.  Random search through 
the 1020  combinations of rotamers in our example is unlikely to be productive. 

A common solution to reduce the size of the search space derives from physical 
principles.  The Boltzmann distribution tells us that molecules spend most of their time 
in low energy states.  The probability of being in state A is given by  
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How do molecules find the lowest energy states without any knowledge of the global 
energy landscape?  The key turns out to be the frequency at which local transitions 
occur.  Imagine a system, be it an atom or a protein, in some particular state on our 1D 
model.  It makes a random state transition (for example, a side chain gets knocked into 
a new position due to thermal fluctuations).  If it goes to a lower energy state, it tends 
to stay there because it lacks the energy to 
move uphill.  Similarly, if it goes uphill, it isn’t 
likely to stay there, because it can get 
knocked back down into the lower energy 
state.  There are also some states that it is 
very unlikely to be able to move to at all 
because the energy of these states is much 
higher than kT. 
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The behavior of molecules can be thought of as analogous to a ratchet mechanism.  
They bias movement to lower energy states, but they preserve the ability to jump some 
barriers – those with energy differences that are small with respect to kT.  

 

Metropolis Algorithm 

The metropolis algorithm uses the principles of the Boltzmann distribution to sample 
states in a way that helps it find minima.  Let’s start with a system in some particular 
state.  It could be a particle on A 1D surface or a protein.   

 

Iterate for a fixed number of cycles or until convergence: 

1. Start with a system in state Sn with energy En 

2. Choose a neighboring state at random; we will call it the proposed state : Stest 
with energy Etest 

3. If Etest< En : Sn+1=Stest 

4. Else set Sn+1= Stest with probability kTEEtest neP /)( −−= ; otherwise Sn+1= Sn 

 

The last step is equivalent to saying that we choose between the two states using the 

odds ratio: 
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in a physical process. 

 

 

There are a few issues that we need to clarify.  You may have been wondering about the 
parameter here called T.  It is the equivalent of temperature in the physical process.  Try 
to simulate what happens in this algorithm when T is very small and when it is large. 

What happens when T is large?  Say kT>>Etest-En? 
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P(Stest)=e0=1 and we accept any move.  This allows us to search the whole space, but we 
are not very likely to rest in a minimum.  What happens when T is very small?  Say 
kT<<(Etest-En)?  Then, P(Stest)=e-∞=0.  We almost never go up-hill. 

The T parameter is critical to the algorithm, and various ideas have been proposed 
about how to set it.  In some cases, you can leave T fixed at a low value and get a 
reasonable search of the energy surface.  However, for very complicated energy 
surfaces we often used something called simulated annealing.  The idea is to use an 
initial high temperature so you can explore lots of valleys and then slowly lower the 
temperature so you settle in a good minimum.  Precisely how you do this is an art, not a 
science.  (The name “annealing” is derived from metallurgy, where heating and cooling 
cycles are used to reduce the number of defects in a metal and increase the size of the 
crystalline blocks.) 

Another important issue: In our algorithm we spoke of choosing a neighboring state.  
This is a poorly defined term.  In the 1D case, of course I mean a small step to one side 
or the other.  Consider how we would choose a neighboring state if we need to repack a 
number of side chains.  Finally, any implementation of this algorithm needs to define 
when the algorithm should stop (convergence criteria). 

 

 

Improving our Models 
The approach we have just described allows us to find a very approximate solution.  In 
particular, we have not allowed the backbone to change to accommodate the new side 

How do we make probabilistic choices in a computer program? 

In order to implement the metropolis algorithm, we need to be able to choose states 
randomly.  We rely on the ability of the computer to produce what is known as a 
pseudo-random number.  Almost every programming language has the ability to 
produce a series of numbers between zero and one that look like they are chosen 
completely at random.  These numbers have two important properties: (1) it is very 
hard to predict the next number in a sequence and (2) the numbers are uniformly 
distributed from zero to one. 

 

If you consider the histogram of these pseudo-random numbers, you will realize that 
P(rand<X)=X for  0<X<=1 

 

So to implement line 4 of the algorithm, we can write  

if rand()<= kTEEtest ne /)( −− :Sn+1= Stest 
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chains.  We have also restricted the rotamers to discrete choices, even though we know 
that the true values are continuous.  Two approaches will allow us to refine these 
approximate structures to more accurate ones: 

1. Energy minimization 

2. Molecular dynamics 

Energy Minimization 

One approach to trying to fix the approximate structures derived from modeling would 
be to think of them like an elastic object that has been deformed.  It will try to relax 
back to its equilibrium state.  So perhaps simulating the physical forces will fix our 
models.  We can attempt to use the potential energy equations described earlier in 
these notes. 

Once we have potential energy equations and a structure, how do we find a new 
structure with lower energy?  One of the most fundamental ways is by energy 
minimization.  You can think of this in direct analogy to minimizing a simple one-
dimensional function, except that here we have hundreds of coupled equations. 

How would you go about finding a minimum of f(x), a function of one variable? 

Look for regions where f′(x)=0;  these are “critical points”; then use second derivative to 
determine if it’s a maximum or minimum.  For example: 

Consider f(x)=x^2+2x+1,  a parabola with minimum at -1 
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f’(x)=2x+2=0 

so x=-1 

The situation is analogous for functions of many variables: 

Look for places where the gradient grad(f) = 0 

 

Then use Hessian matrix of second order partial derivatives to determine if the point is a 
minimum, maximum, etc. 

We’d like to take a big equation for the energy of the protein and solve for its minimum. 

This isn’t practical to do analytically in very high dimensions.   

However, there are lots of alternatives to the analytical approach. 

Here is a simple method for finding minima known as gradient descent.  Let’s imagine 
we have some complicated energy function.  I’ll draw a function of one variable.  You 
might be able to picture a complicated function of two variables.  Our system has 
hundreds of variables. 

 

 

Here is how gradient descent works:  We start with some point x0 and compute the 
gradient. 

The negative of the gradient is pointing in the direction that decreases most rapidly. 

So we can compute a new position 

)( 0001 xUxx 

∇−= ε  
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where epsilon is a small number that determines the size of the step. 

We can keep iterating this.  

 

With most functions, this will converge on a solution fairly rapidly.  In those cases we are 
guaranteed to find a minimum, but we don’t know if it will be a global or local minimum. 

For protein structures we can start with our current structure based on the homology 
model. That will be on one of these hills.  Then we can compute for every atom the best 
direction in which to move it and iterate this process as we go down the hill.   

Molecular dynamics 

The atomic forces can be used for more than just minimization.  In principle, if we have 
a sufficiently accurate description of the forces, we should be able to simulate what 
actually is going on in solution.  This approach is called molecular dynamics:  

Once you have the forces, you can write down these equations: 

given the position xi(t0) and velocity vi(t0) of the ith particle at the starting time t0, the 
position and velocity of the particle a short time later, at t1, are given by 

 

xi(t1) = xi(t0) + vi(t0) × (t1 − t0) (1) 

 

 
(2) 

Equation (2) becomes the following from Newton's equation of motion, 

 

 

 

This relatively simple equation allows us to predict the motion of an atom in time.  Thus, 
we could in principle simulate anything from a minor relaxation of a deformed protein 
to an entire folding process.  However, there are a lot of details to work out here.   

When will the solution become stable? 
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1. The most important point is the motion of atom i is a function of the positions of 
all the other atoms, as all of these contribute to Fi(t).  So we have a horribly 
complicated set of equations of motion that will need to be solved numerically. 

2. In addition to the terms we have already discussed, the parameters for bond 
lengths and angles need to be incorporated in the force calculations.   

3. You need to choose initial values for the position and velocity.   

 All these problems have been solved, and molecular dynamics simulations (MD) are a 
very powerful tool for sampling the range of physical motion that can take place.  They 
were crucial calculations in the early days of protein structure because they helped 
convince people that proteins are not rigid.  The techniques for determining protein 
structure give static pictures.  MD animates these pictures, giving the correct impression 
that the proteins are jiggling around.  These calculations have been used to model many 
interesting questions, such as how oxygen gets in and out of the heme pocket in 
myoglobin.  

Unfortunately, MD is limited by something known as the radius of convergence.  We can 
only simulate relatively short time scales.   

Until recently, heroic efforts 
using supercomputers have 
been only able to simulate 
folding of a tiny protein (36 
amino acids) on a time scale 
of one micro second, 
resulting in a structure with 
an RMSD of 4.5 angstroms 
(Duan and Kollman (1998) 
Science 282:740;  see 
Schaeffer, et al. (2008) 
Current Opinion Struct. Biol. 
18:4 for more recent 
references).  However, Shaw, 
et al. (2010) Science 330:341 
have made a dramatic 
advance in this area.  Using a 
specially built computer they have been able to simulate one millisecond of dynamics 
for a small protein.  This was long enough to observe multiple folding and unfolding 
events.  For two proteins, they simulated folding from an extended conformation to the 
correct final folded form.  In 2011, they were able to simulate the folding and unfolding 
of twelve small proteins, the largest of which was 80 amino-acids [8]. 

 
Figure from Shaw et al. (2010).  Fig. 1 Folding proteins at x-ray resolution, 
showing comparison of x-ray structures (blue) (15, 24) and last frame of MD 
simulation (red): (A) simulation of villin at 300 K, (B) simulation of FiP35 at 337 
K. Simulations were initiated from completely extended structures. Villin and 
FiP35 folded to their native states after 68 µs and 38 µs, respectively, and 
simulations were continued for an additional 20 µs after the folding event to 
verify the stability of the native fold. 

© American Association for the Advancement of Science. All rights reserved. This
content is excluded from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/. 
Source: Shaw, David E., Paul Maragakis, et al. "Atomic-Level Characterization of
the Structural Dynamics of Proteins." Science 330, no. 6002 (2010): 341-6.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1187409
http://dx.doi.org/10.1126/science.1187409
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Alternative uses of molecular dynamics 

Even if computing speeds increase dramatically, simulating the time evolution of a single 
protein conformation will be of limited utility in understanding the behavior of a bulk 
solution.  Most often, we want to understand the behavior of the ensemble of 
molecules.  Consider the protein folding problem.  Since the unfolded state is an 
ensemble, the amount we can learn from a single simulation is inherently limited. 

There have been a number of interesting developments in protein structure prediction 
and folding simulation that, in one way or another, attempt to sample from the overall 
distribution.  One conceptually simple and very successful approach was pioneered by 
the Pande lab and is called Folding@home.  They distribute folding simulations to the 
computers of tens of thousands of volunteers where the jobs run when the computer 
would otherwise be idle.  This is still a very small ensemble compared to even a very 
dilute solution, but it has one clear advantage.  If we assume that folding follows first-
order kinetics, then the probability of observing a folding event is linear in the number 
of molecules we sample and in the length of time we simulate.  So, distributing a job to 
10,000 computers is equivalent to a 10,000-fold increase in the time-scale over which 
we can search for a folding event.  Even with Moore’s law, it takes a long time to get a 
104 increase in computing speed. 

How do you measure the distance between two protein conformations? 

First, we have to agree that the actual coordinates of a protein are not what we want to 
measure.  I can rotate or translate all of these in a uniform way and I haven’t changed 
the energy or the structure. 

So if I have two structures that are identical, except for a translation or a rotation, it’s 
not interesting. 

To determine the similarity of two structures, we attempt to superimpose them. 

We search for the rigid body rotation and translation that minimizes this quantity: 

 

where v and w are the coordinates for pairs of equivalent atoms (usually Cα and 
sometimes C,N,O,Cβ). 

An RMSD of 0.5 Å is very good.  It has been estimated that the alpha carbons in 
independent determinations of the same protein can have this level of variation [9].  
The useful range for a model would be less than 3 angstroms.   
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Even at 3 angstroms, you can’t refine the model just by running a simulation of the 
atomic forces.   

The key in molecular modeling is finding ways to move large distances at low 
computational cost.  We will return to this topic in future lectures. 
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Molecular Design Part 2 Drug Design 
In the previous lecture we examined ways in which we could modify the specificity of a 
protein.  In today’s lecture we will look at ways to identify small molecules that can bind 
exisiting proteins, a topic which is obviously of great interest to the pharmaceutical 
industry. 

How to design small molecule ligands 

The search for small molecule pharmaceuticals can be divided into two types: 

 Analog-based design  

 Structure-based design 

Analog-based design is useful one doesn’t know what the target is, but there is a 
compound with some activity in an assay.  Many analogs (variants) of the lead compound 
are made and tested for efficacy.  Aspirin is good example of analog-based design.  This 
drug has many effects, including reducing fever, reducing pain and preventing stroke.  
The first leads were identified in ancient times when willow bark was used as a 
therapeutic for fever, a fact known to Hippocartes. Salicylic acid, the active components 
of willow bark, was identified in the mid nineteenth century, but it was very bitter and 
caused digestive problems.  In 1897, chemists at Bayer determined that acetylsalicyclic 
acid, an analog of salicylic acid, retained the therapeutic properties but was easier to 
ingest.  Yet, it was only in 1971 that the first target was identified (which led to a Nobel 
prize).  Clearly, it is possible to produce safe an effective drugs by testing variants of a 
lead compound without understand the mechanism by which the compounds function. 

One of the principal approaches to modern analog-based design is known as QSAR 
(pronounced Quasar), which stands for quantitative structure-activity relationship.  
Analog-based design is a collection of data-mining techniques that look for new chemical 
entities that have similar properties to a lead compound.  One tests a number of variants 
of the lead compound and then looks for a correlation between the free energy of binding 
and particular structural properties of the variants such as size, hydrophobicity, etc.  This 
allows future experiments to focus on particular types of analogs.  Of course, there is no 
guarantee that such a relationship exists.  Nor can we be sure that if one is found it will 
apply to untested compounds. 

One important challenge for this approach is to identify properties that are likely to be 
physically meaningful.  Early analyses in the 19th century by Meyer and Overton (cited in 
[4]) found relationships between overall hydrophobicity and the effectiveness of 
anesthetics, but such trends are not likely to be of help in discovering compounds with 
high affinity and activity for particular molecular targets.   

A number of types of descriptors are in use.  A very common one is called Comparative 
Molecular Field Analysis (CoMFA).  The molecules are aligned and placed in a grid.  
Imaginary probe atoms are then tested at each point on the grid to determine their energy 
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of interaction with the molecule.  This gives a three-dimensional map of the hydrophobic, 
steric and electrostatic properties that are common to the ligands. 

 

Structure-based design begins with the structure of protein and looks for a small 
molecule (<500 Da) that will bind tightly.  This approach has important differences from 
the engineering of protein-protein that we examined previously.  In a case like the 
redesign of the GCSF-GCSFR interface, the wild-type hormone formed a great 
scaffold.  If our changes were conservative, we could assume that the overall interface 
and the hormone structure remained the same. 

For small molecules: 

1. We don’t know where the ligand is going to bind on the surface of the protein. 

2. We don’t just have 20 amino acids to choose from, but millions of possible small 
molecules. 

3. Depending on the potential ligand, we may have more degrees of freedom in the 
ligand. 

Structure-based design 

There has been considerable success in using the three dimensional structures of protein-
ligand complexes to improve on the specificity and affinity of small molecules that were 
identified already.  A survey of the success stories can be found here [10] and includes 
design of compounds to inhibit HIV protease and the development of Tamiflu, which was 
widely used the H1N1 flu pandemic.   In these cases, the structures are analyzed to 
determine what changes could be made to the ligand to increase its affinity for the target.   

There is also tremendous effort to use these methods to discover molecules that will bind 
to a protein of interest without needing an initial lead.  In this general approach there are 
two primary problems that must be solved: 

 
Method of computing 3D 
properties for QSAR (from [4]). 

© Bentham Science Publishers Ltd. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sarkar, Aurijit, and Glen E. Kellogg. "Hydrophobicity–Shake Flasks, Protein Folding and
Drug Discovery." Current Topics in Medicinal Chemistry 10, no. 1 (2010): 67.
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1. Docking  

2. Scoring 

Docking: 

In the “docking” phase, algorithms attempt to predict the position and orientation of a 
ligand on a target.  (This is also referred to as the “pose” of the ligand).  In these 
calculations, it is typical to ignore solvent and assume that the protein is rigid.  With 
those assumptions, there are six variables we need to consider:  translation in three 
perpendicular axes combined with rotation about three perpendicular axes (yaw, pitch, 
roll). 

Although most docking programs rely on a rigid protein, they allow the ligand to change 
conformation.  The optimization problem is typically solved by one of three methods: 

• Systematic search 

• Stochastic search 

• Molecular dynamics simulations 

Systematic search corresponds to the “guess and check” algorithms of 6.00.  Stochastic 
search includes the metropolis algorithm and related approaches.  Molecular dynamics 
simulations were covered in the last lecture.   

Scoring functions.  In order to determine which ligand “pose” is 
best, we need a way to score the interactions.  There are three 
methods that are the most common: 

• Force field-based score  

• Knowledge-based scoring 

• Empirical scoring  

The force field based scores are what we have looked at so far.  Their strength is that they 
derived from sound physical principles.  However, we have seen that in order for them to 
produce accurate results, especially with regard to solvation, they need extremely fast 
computers.  

Knowledge-based scores derive the frequency of certain types of interactions and 
conformations from databases.  The following equations for a knowledge based potential 
come from reference [11].  Let r be the distance between two atoms, and ρij(r) be the 
number of atoms pairs of types i and j that are separated by distance r in the database, and 
ρ*

ij(r) be the number of such pairs in a reference state (see the original article for a 
definition of the reference state).  If we assume that the ratio of these numbers will be 
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distributed according to the Boltzmann distribution, then we can derive an empirical 
potential uij(r) from ratio of the frequency of the observations: 

 

Various atom types are defined for these functions, such as “aliphatic carbon” and 
“aromatic carbons” to capture the complex chemistry.   

Below are some sample potentials for “aliphatic carbons bonded to carbons or hydrogens 
only (C3C)”, “Amide nitrogens with one hydrogen (N2N), “oxygens in carbonyl groups 
of the mainchain (O2M)”, “Guanidine nitrogens with two hydrogens (N2+)” and 
“Oxygens in carboxyl groups (O2-)”.   

One challenge for knowledge-based approaches is that there are likely to be a number of 
different types of binding sites for ligands.  For example, polar binding pockets should 
have different distributions of atoms than non-polar pockets.  In principle, this problem 
could be overcome by splitting the training data into categories and developing separate 
potentials for each type of pocket. 

 

Empirical scoring methods have a similar functional form to force field-based scores, 
but include additional terms that capture missing energetic components.  For example, the 
program x-score [1] breaks the binding energy into the following components: 

 

Each term has a set of parameters that are derived from structures for which the Kd is 
known.  The vdW term looks a lot like our force-field term, but all the hydrogen atoms 
are ignored.  ΔGdeformation tries to capture the entropic effects of binding.  One way to do 
this is to assign a penalty term for every bond that can rotate in the free ligand but is fixed 
in the bound ligand.  Similarly, the hydrophobic term tries to capture the cost/benefit of 
burying varies types of atoms.  In these cases, the functional form is arbitrary.  You could 
choose almost any sort of equation and then try to fit the free parameters to experimental 
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data.  The final term is derived from the regression analysis and sweeps up remaining free 
energy changes such as loss of translational and rotational freedom.   

The hydrogen bond term from one of these potentials is shown below.  First, the 
geometry of the H-bond is defined in terms of two angles between the heavy (non-
hydrogen) atoms, since the hydrogens are not seen in the crystal structure. 

 

Then the H-bond term is set to 
, where each of the functions 

is obtained by looking at the frequency of particular angles 
and distances in the databases. 

The specific parameters in each term are determined by 
fitting the equations to experimental data for protein-ligand 
interactions.  The fitted data from one of these methods are 
shown below. 

Do these models actually work?   

Many of these algorithms have been successful in building accurate models of the ligand 
bound to its target.  However, they are not very good at distinguishing true ligands from 
decoys.  So you need to be thoughtful in how to apply these algorithms.  The will help 
enrich a pool of ligands for real binders, and can be very useful in making sure the 
experimental resources are used wisely.  As a result, these algorithms are often used for 
de-selection, which is the process of predicting really bad compounds to be filtered out 
of the experimental process.   

Which proteins make good drug targets? 

Genomic and proteomic technologies have 
dramatically sped up the earliest steps of the 
drug discovery by helping to identify protein 
targets that are believed to be important in a 
disease. With so many potential targets, it has 
become increasingly important to figure out 
which of these targets can be most effectively 
targeted by a drug.  A consensus is emerging 
in the pharmaceutical industry that some 
proteins are much harder, perhaps even 
impossible, to target than others, and there is 
great interest in computational methods that 
could reveal which proteins are the most 
“druggable.”  Examples of proteins that are 

 

From reference [1]  

 
 

Observed distribution of 
distances between donor and 
acceptors 

© Springer-Verlag. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
Source: Gao, Ying, Renxiao Wang, et al. "Structure-based Method
for Analyzing Protein–Protein Interfaces." Journal of Molecular
Modeling 10, no. 1 (2004): 44-54.
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believed to be undruggable include interleukin-1 beta-converting enzyme 1 (for anti-
inflammatory therapy), phosphotyrosine phosphatase 1B (diabetes), cathepsin K (arthritis 
and osteoporosis) and HIV integrase. 

A number of approaches have been proposed for identifying druggable targets (reviewed 
in Hajduk et al. 2005).  One of the simplest approaches is to assume that if a protein has a 
lot of sequence homology with the target of a known drug, then it too is likely to be 
druggable.  Thus, there is a belief in the pharmaceutical industry that G-protein coupled 
receptors, ion channels, kinases and proteases make good drug targets.  However, this 
approach is inherently self-limiting.   

An alternative approach analyzes the three dimensional protein structures to determine 
how druggable a particular protein is (rather than a whole family).  The challenge here is 
that there is no experimental or computation way to test a single protein against all 
possible drugs.  It has been estimated that the number of potential drugs is on the order of 
1060.   

 Cheng et al. (2007) proposed a method to predict the “maximum achievable binding 
energy” – the maximum possible interaction energy of a protein with any ligand.  If this 
value is low for a protein, then there is no point in searching for ligands, because they 
will not make good drugs.  They argue that solvation effects will dominate the calculation 
of maximum achievable binding energy.  They then point out that based on concepts we 
will examine later (see Lipinski’s rules), most orally available drugs will have the same 
size and charge.  As a result, the value of energy terms from van der Waals, electrostatics 
and loss of rotational and translational energy will be roughly the same for the binding of 
any protein to its optimized orally available drug.  Similarly, the cost of desolvating the 
ligand will also be approximately constant.  They propose that the dominant force in the 
calculation of the maximum achievable binding energy will be the energetic cost of 
desolvating the ligand binding site on the protein, which will depend on the curvature of 
the binding site and the fraction of the site that is hydrophobic.  Somewhat surprisingly, 
these two features seem sufficient to distinguish druggable and undruggable proteins in 
their dataset.  Perot et al. [12] survey a number of other methods for detecting druggable 
proteins.   

A number of studies have analyzed the structures of proteins bound to other proteins, 
non-protein ligands and drugs [13].  As you might expect, there are big differences 
between protein-protein and protein-small molecule interfaces.  Protein-protein interfaces 
tend to be composed of many small binding pockets, whereas ligands bind to fewer, but 
but bigger pockets.  In cases where there are structures available for both the bound and 
unbound form, it is clear that ligands cause an increase in the size of the pockets.  Thus, it 
may be necessary to consider more than just the static structure of an unbound protein in 
order to know if it is druggable.  One approach would be to use molecular dynamics or 
other techniques to determine if there are alternative low-energy conformations with 
larger pockets.  These might be conformations to which a ligand could bind and stabilize. 
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ADME/T 

Broad considerations for drug design 

A crucial question in pharmacology is what happens after a drug is administered.  The 
main concerns are referred to as ADME/T:  Absorbtion, distribution, metabolism, 
excretion and toxicity.  The first four of these (ADME) are often grouped together under 
pharmacokinetics. 

Absorption refers to how the compound gets taken up from the site of administration 
(oral, topical, injected).  If it is swallowed, it has to get through the digestive tract into the 
blood stream, for example. 

Distribution:  how does it get to the target organ. 

Metabolism:  how does it get broken down?  Is the administered compound the active 
one, or is it one of the metabolites?  Are the metabolites toxic? 

Excretion/Elimination:  what happens to the compounds and their breakdown products.  
If they are not eliminated at all, there will be toxicity.  If they are eliminated too fast, they 
are not active enough.  Are they toxic at the site of excretion? 

The path a typical drug takes is illustrated in the figure below. 

Error!

 

Proteins tend to make relatively poor drugs because they typically must be injected rather 
than ingested and are metabolized quickly.   

 
Figure from Kharkar (2010) [7]. 

© Bentham Science Publishers Ltd. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Kharkar, Prashant S. "Two-Dimensional (2D) in Silico Models for Absorption, Distribution, Metabolism, Excretion
and Toxicity (ADME/T) in Drug Discovery." Current Topics in Medicinal Chemistry 10, no. 1 (2010): 116-26.
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Most drugs tend to be small molecules.  In fact, almost all have particular properties that 
can be summarized by a few simple rules. 

Lipinski's Rule of Five states that compounds with two or more of the following 
characteristics are likely to make poor drugs because of bad oral absorption:  

• More than 5 H-bond donors  

• Molecular weight >500  

• lipophilcity is high (log P>5, where P is the partition coefficient between Octanol 
and water)  

• Sum of N's and O's (a rough measure of H-bond acceptors) > 10  

Others have included the following warning signs: 

• Polar surface area > 140 Å2 

• More than one formal charge 

These rules, more appropriately described as guidelines, do not cover drugs that are 
derived from natural products, for which other absorption mechanisms are involved, or 
injected drugs.  However, it is clear that, in general, that small molecules rather than 
proteins will make better drugs. 

It is important to realize that because the number of potential compounds is huge, most 
have never been experimentally tested for logP, and this value must be estimated.  
Because the compound will encounter a variety of environments in the stomach, gut and 
in the blood, which vary in pH from 1 to 8, there is no single value for logP that will 
reflect all these conditions. 

The requirements for low lipophilicity and also a limited number of polar atoms reflects 
the need for a balance between hydrophobicity on the one hand, which allows the 
molecule to get across membranes in the intestine and the blood-brain barrier, and 
solubility in the gut and blood.  Lipinski has since created a number of other rules, cited 
in [7], that help predict compounds that are likely to work in the central nervous system, 
lungs, etc.   

Lipinski also compared lead compounds for Merck and Pfizer and discovered that the 
method used for drug discovery biased the types of compounds that were discovered.  
Merck tends to focus on “rational design” of the type described in these notes, while 
Pfizer focused on high-throughput screens.  Compounds from both companies showed an 
increase in molecular weight with time.  The Merck compounds show no increase in 
lipophilicity, but do show an increase in H-bonds.  The opposite is seen for the Pfizer 
compounds.  Each screening process tends to select for properties that will increase 
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affinity in the assay (computational free energy for Merck and in vitro binding for 
Pfizer), at the expense of bioavailability. 

Error!

 

There are many efforts underway to predict other aspects of ADME/T.  These focus on 
particular steps in the process, such as oral bioavailability, binding to plasma proteins, 
hepatic metabolism and specific mechanisms of toxicity.  (Reviewed in [7]). 

Some off-pathway effects (whether beneficial or detrimental) are likely to be caused by a 
single molecule binding two different proteins.  There are not enough data yet to know 
whether this occurs because the binding sites on the protein are similar or because of two 
very different modes of interaction.  However, there is a least one case with that shows 
two proteins of completely different structure binding a ligand with similar pockets (see 
figure).  Algorithms that can detect such similar pockets could be very useful in 
predicting toxicity or alternative uses of a drug.  COX-2 inhibitors have been shown to 
bind carbonic anhydrase, in addition to the expected COX-2 proteins, and have be 
proposed as potential treatments for glaucoma, which is treated by inhibition of carbonic 
anhydrase. 

  

Top: Merck compounds (left) show now increase in logP over time, while Pfizer 
compounds do.  Bottom:  By contrast, the Merck compounds (left) show an increase 
in H-bonds not seen in the Pfizer compounds (right).  Figures from [5]. 

  

© Elsevier Science Inc. All rights reserved. This content is excluded from our Creative
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