

The sliding filament model

 $\underline{x > h}$:

In this region the actin binding site is approaching the free myosin head, unoccupied. Since both k_+ and k_- are zero, no binding occurs:

$$n(x) = n(h) = 0$$

 $\underline{h}-\underline{x_0} < x < \underline{h}$:

If binding is to occur, it has to do so (according to this simple model) within this narrow region where the binding rate constant is large, described by the equation:

 $\underline{0 < x < h-x_0}$

Both the attachment and detachment rate constants are zero, so the myosin head can neither bind to nor detach from an actin filament, and the probability of attachment remains constant:

 $n(x) = n(h-x_0) = constant$

$\underline{x < 0}$

As the complex moves into the region x < 0, the force of interaction sustained at the actin-myosin bond changes sign and its probability of attachment begins to fall, as described by the equation:

$$-v \frac{dn}{dx} = -k_{-}^{0}n$$

$$n(x) = n(0)\exp \frac{k_{-}^{0}x}{v} = 1 - \exp -\frac{k_{+}^{0}x_{0}}{v} \exp \frac{k_{-}^{0}x}{v}$$

$$h^{-} X$$

Work done by a single cross-bridge that attaches at
$$x=a$$
 and
detaches at $x=-b$:
$$W = \int_{-b}^{a} \kappa x dx = \frac{\kappa}{2} \left(a^{2} - b^{2}\right) \qquad \sigma lA = \int_{-}^{a} [n(x)\rho_{s}As/2]\kappa x dx$$
$$\sigma = \frac{\rho_{s}As\kappa}{2lA} \int_{-}^{a} n(x)x dx = \frac{\rho_{s}As\kappa}{2lA} \int_{-}^{0} n(0)x \exp \frac{k_{-}^{0}x}{v} dx + \int_{0}^{h} n(0)x dx$$
$$\sigma = \frac{\rho_{s}s\kappa h^{2}}{4l} 1 - 2 \frac{v}{hk_{-}^{0}}^{2} 1 - \exp -\frac{k_{+}^{0}x_{0}}{v}$$
$$\frac{\sigma_{max}}{\sigma_{max}} = 1 - \frac{v}{v_{max}}^{2} 1 - \exp -\frac{k_{+}^{0}x_{0}}{v} \qquad \sigma_{max} = \frac{\rho_{s}s\kappa h^{2}}{4l}$$
$$v_{max} = \frac{hk_{-}^{0}}{\sqrt{2}}$$

Models	
Length scales and details	
Lumped parameters (Kelvin, Voight, Maxwell)	
Coarse Grained Continuum Mechanics	
Statistical Mechanical Models	
Single Molecule	

During blood clotting, platelets change shape due to changes in the actin cytoskeleton

Images removed due to copyright considerations.

Organelles of the eukaryotic cell

- Lysosomes
- Peroxisomes

Image removed due to copyright considerations

- Mitochondria
- Chloroplasts
- the Endoplasmic Reticulum
- the Golgi complex
- the Nucleus
- the Cytosol

Cortical networks in erythrocytes

