Advantages of zebrafish over bacteria in biological studies

• Eukaryotic

• Multicellular

• Develops!!

Development: from a single-cell zygote to a multi-organ organism

Advatages of zebrafish as a MODEL ORGANISM in developmental biology

It is a <u>VERTEBRATE</u>, and thus can provide clues to human biology.

- _ It <u>BREEDS</u> quickly and often (daily).
- _ Its embryos develop <u>OUTSIDE</u> the body where they can be easily observed.
- Its embryos are $\frac{\text{TRANSPARENT}}{\text{can be seen easily.}}$ so defects
- _ Embryonic development is <u>QUICK</u>.
- _ They can <u>ABSORB</u> small molecules, such as mutagen/teratogen, from the aquarium water.

Module overview

Goal Technique

- Zebrafish development observation
- Phase contrast microscopy
 Teratogenesis
 - DAY 2 ON
- Gene expression RNA isolation } TODAY analysis • Northern blot

GOAL I: study development at morphological level

GOAL II: study development at molecular level

• Gene expression pattern

How would you analyze gene expression?

1. PROTEIN!

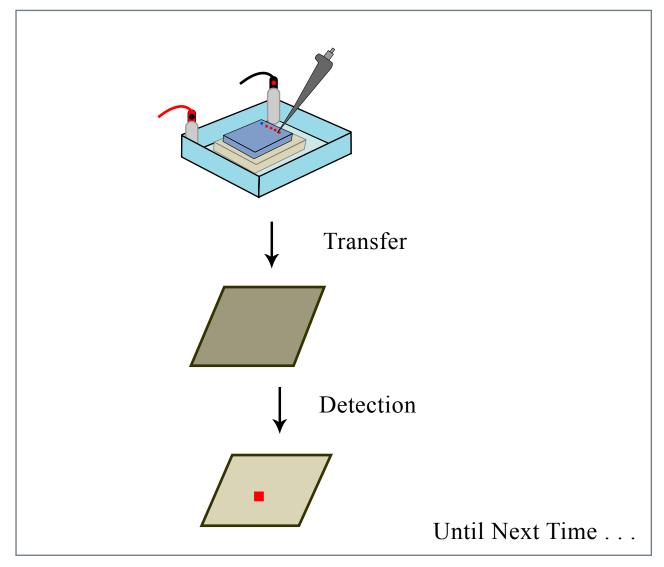
-Western blot

or

-GFP

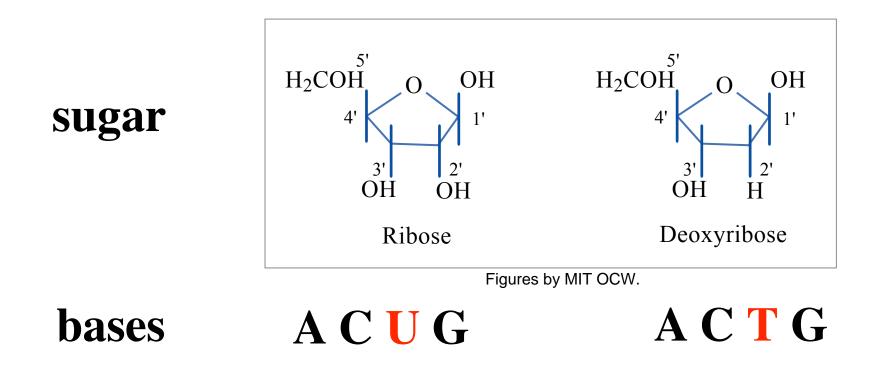
How would you analyze gene expression?

2. RNA!

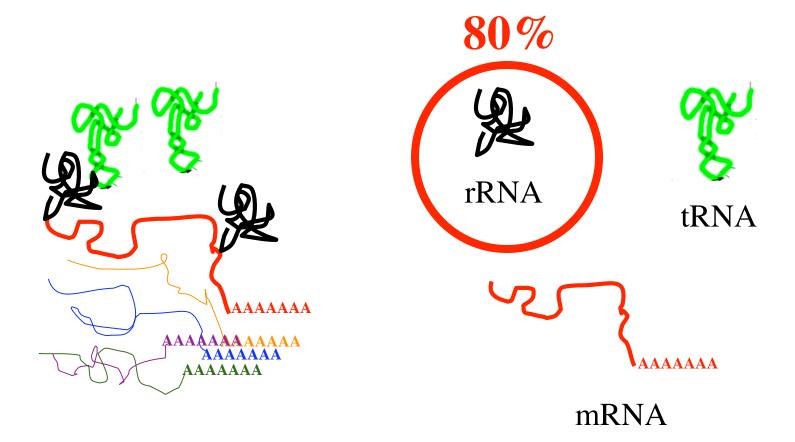

-PCR (reverse transcriptase) or

-Northern blot

Northern blot: molecularly monitor development progression


Total RNA from different Amount of a developmental stages specific mRNA? ААААААА

Northern is very similar to Western blot.


Figures by MIT OCW.

RNA vs DNA

structure Single stranded double stranded

Total RNA

RNA isolation: RNAse ALERT!

- Wear gloves and lab coats
- Use sterile tips and tubes
- Don't speak directly to your sample
- Keep samples on ice
- Use DEPC water

DEPC: disrupts RNAses' active site by chemically altering His and Tyr.

RNA isolation step 1: lysis of embryos

- Lysis buffer contains:
 - buffer NaCitrate
 - detergent sarkosyl
 - protein denaturant GITC
 - reducing agent βME

DONE by the teaching staff.

RNA isolation step 2: separate RNA from the others

• Phenol/chloroform:

Extract hydrophobic protein

• NaOAc (PH 4.0): Low PH allows RNA but not DNA to stay in the aqueous phase

Phenol/chloroform: very nasty!!

• Eats through gloves in 7 min!!

- Wear gloves, lab coats and goggles.
- Work with and dispose in the hoods.

RNA isolation step 3: precipitate, wash and dissolve RNA

- isopropanol
- 80% ethanol
- DEPC-treated ddH2O