7.02/10.702

Spring 2005

Genetics Day 6 Recitation Notes (Eric Sullivan)

- I. Genetic Linkage
- II. Metabolism: catabolism vs. anabolism
- **III.** Cotransduction mapping

I. Genetic Linkage

- two genes which are extremely close together on the chromosome are said to be "linked"
 - Draw two genes, AraC and GeneX interrupted with miniTn10 transposon
 - If a piece of DNA containing ara::miniTn10 gets transferred to recipient, then cells will be Ara- and KanR
 - If a piece of DNA containing geneX::miniTn10 gets transferred to recipient, then cells will be Ara+ and KanR.
 - We used a low MOI in our mutagenesis to ensure that only one transposon should occur in our donor (mutant) strains, and therefore we hope that all our transductants are Araand KanR

II. Metabolism

- Anabolism: the ability to synthesize molecules
 - ex. Leu- mutant cannot synthesize leucine, so we must provide a Leu- mutant with leucine for it to grow
- Catabolism: the ability to break down molecules
 - ex. Ara- mutant cannot break down arabinose (for use as a carbon source). so if arabinose is the only carbon source provided (like on an M9 Arabinose plate), an Ara- mutant won't grow.

Experimentally:

Plate	Ara+	Ara+ Explanation	Ara-	Ara- Explanation
	strain		strain	
M9 Ara	growth	strain can use the arabinose on	no	can't use the arabinose on the
Leu Kan		the plate as a carbon source	growth	plate as a carbon source
M9 Glu	growth	strain can use the glucose on the	growth	strain can use the glucose on the
Leu Kan		plate as a carbon source		plate as a carbon source

Plate	Thr+	Thr+ Explanation	Thr-	Thr- Explanation	
	strain		strain		
M9 Glu	growth	strain can make its own threonine,	no	strain cannot make its own	
Leu		so none needs to be provided	growth	threonine, and none is provided	
M9 Glu	growth	threonine is provided on the plate,	growth	threonine is provided on the	
Leu Thr		but strain can also make its own		plate for cells to use	

III. Cotransduction Mapping

- Donor and recipient must be different at all 3 markers
 - \circ Donor: Ara (Kan^R), Leu (Cm^R), Thr⁺
 - \circ Recip.: Ara⁺(Kan^S), Leu⁻(Cm^S), Thr⁻
- Select for one, screen for the other two (example: select KanR, screen for CmR/CmS and Thr+/Thr-)
- Cotransduction frequency probability of having two genes transduced on the same DNA
 - The larger the number, the closer the two are (lower map distance)
 - Similarly, lower frequencies are further apart (high map distance)

Example 3-factor cross from the appendix:

Donor: Recipient:	Tet ^R , M Tet ^S , M	Met ⁺ , Thr ⁺ Met ⁻ , Thr ⁻							
Select for Tet, screen for Thr and Met									
Plate used		Met ⁺ /Thr ⁺	Met ⁻ /Thr ⁺	Met ⁺ /Thr ⁻	Met ⁻ /Thr ⁻				
M9 Glu Met Tet		+	+	-	-				
M9 Glu Thr Tet		+	-	+	-				
M9 Glu Thr M	let Tet	+	+	+	+				
		548	579	3	90	= 1220			

CTF of Tet and Met = (548 + 3)/1220 = 45%CTF of Tet and Thr = (579 + 548)/1220 = 92%

Three possible orders:

- 1. Tet, Met, Thr
- 2. Thr, Tet, Met
- 3. Met, Thr, Tet

The CTF data allows us to eliminate order #1

-- CTF of Tet and Thr is larger than the CTF of Tet and Met, therefore Tet and Thr must be closer than Tet and Met.

Rarest class – Tet^R , Met^+ , Thr^-

- If order is Thr, Tet, Met: to get the rare class requires a double crossover event
- If order is Met, Thr, Tet: to get the rare class requires a quadruple crossover event
- Since rare classes arise from rare events—and a quadruple crossover event is more rare than a double crossover event—the gene order is Met, Thr, Tet.