Problem Sets

Fall 1998



7.03 Problem Set 1

Due before 5 PM on Thursday, September 24
Hand in answers in recitation section or in the box outside the class

1. (a) You and your lab partner have isolated twenty His™ yeast mutants. Mutants 1 —
10 are of mating type o and mutants 11 — 20 are of mating type a. Your partner has
performed complementation tests by mating each « strain to each a strain. The table
below shows the results where a "+" at the intersection of the two parental strains
indicates that the diploid can grow without histidine added to the medium, and a "-"
indicates that the diploid can't grow without histidine. Unfortunately, after all of the
data are collected and the plates are thrown away, your partner spills cotfee on the
table wiping out much of the data. From the data that remains see if you can
reconstruct the full table.

strains of mating type o
wild-type 1 2 3 4 5 6 7 8 9 10

11 + - = - 4

13 —_ — —

stra?ns of 15 ‘ —_ , —_ . +
mating type a

16 + - -
17 + + - + + +
18 -+t = =

19 + - -+ +

20 + - - o+

(b) Determine how many different genes are represented by your collection of His~
mutants. For your answer you should indicate which mutations fall into the same

.. complementation group. Any remaining ambiguities in the assignment of mutations to
-complementation groups should be explained.



2. (a) In a cross between a male mouse from a true-breeding black strain and a
female from a true-breeding tan strain all of the Fq progeny are gray. "

Based on the information that you have at this stage, is it possible that a single gene
determines the differences in coat color among the two parental strains and progeny?
If so, what coat colors should appear in the Fo generation and at what frequencies?

(b) Infact, when F{ mice are crossed among themselves, the following Fo progeny are
produced: 30 gray mice, 10 black mice, 8 tan mice, and 2 dark brown mice.

Propose a genetic model to account for the existence of the dark brown Fz mice. For
your answer give the genotypes of the parental mice, the F{ mice and each class of Fo
mice.

(c) Use the Chi-square test to show that the observed frequencies fit with the expected
frequencies based on your model. For your answer, give the observed and expected
phenotypic ratios, the degrees of freedom, your calculated value for x2, and a rough
estimate of the p value.

(d) Returning to the original true-breeding parental strains, a male from the tan strain
is crossed to a female from the black strain. As expected all of the female F4 mice are
gray, but to your surprise all of the male Fy mice are black.

Propose a genetic model to account for this new data. Give the genotypes of the male
and female parental mice and the male and female F1 mice. Finally, predict the types
of mice that will appear in the Fo generation. Specify the coat colors, sex, and

expected frequency of each class.

d
(e) Given the genetic model that you have developed in part (&), return to the crosses
described in parts (a) and (b) and determine what the F3 generation will look like.

Again, specify the coat colors, sex, and expected frequency of each class.
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3. Each of the following pedigrees carries two different recessive traits indicated as
follows:

@ = individual with trait 1 @ = individual with trait 2

= individual with both
frait 1 and trait 2

The loci for the two traits are linked on the same autosome and lie 20 cM apart. For
each pedigree, calculate the probabilities that the individual indicated by ? will have
only trait 1, only trait 2, or both traits.

(a) (b)
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7.03 Problem Set 1 Solutions

‘. - strains of mating type «

wid-type 1 2 8 4 5 6 7 8 9 10
11 + - - 4+ T = -+ = + +
12 y - -+ - =+ -+ T
{ 13 - - — - = = = = =
1 14 + 4+ + -+ F AT T+
!strainsof 15 o+ S WS S T T R S
‘\matingtypea | PN
‘\ 16 + A+t = T +
1 7+ o+ A o+ =
% 18 + + 4+ — 4+ 4+ F + - = +
\ 0l 4+ F oA 4+ - A+ - ot
. 20 + m— = = = 4

1b. There are at least five different complementation groups (and hence at least 5 genes
represented). The first group contains mutants 1,2,5,6,11,12,15, and 20. The second
group contains 3, 9, 14, and 18. The third group contains 4, 16, and 19. The fourth group
contains only 17. A fifth group contains 7. 10 may belong to this last group, or perhaps
its own group; it cannot be determined for certain from this data. Lastly mutants 13 and 8
are dominant mutations and cannot be assigned to any complementation groups based on
the data presented in this table.

2a. If we were to assume that one gene determined the coat color, then this would be an

example of co-dominance. In this case the F2 would have phenotypes at the following
ratio: 1Black:2Gray:1Tan.

2b. Since this ratio is approximately a 9:3:3:1 ratio, a reasonable hypothesis would be a
two gene model. In this case the black parental mouse would have a genotype of B/B t/t
and the tan parental mouse would have a genotype of b/b T/T. All of the F;’s would have
the genotype B/b T/t. The black F,’s will have two recessive tan traits (t/t) and at least
one dominant black trait (B/?). The Tan F,’s will have two recessive black traits (b/b)
and at least one dominant tan trait (1/7). If the F, is dark brown it will have two pairs of
recessive traits (b/b t/t). All other genotypes (B/? T/?) will have a gray phenotype.



7.03 Problem Set 1 Solutions

2¢.

X2 = ¥(0-E}/E

Phenotypic class Observed Expected (O-E)/E
Gray 30 9/16*50 =28.125 0.125
Black 10 3/16*50 =9.375 0.041
Tan 8 3/16*50 = 9.375 0.202
Dark Brown 2 1/16*50 = 3.125 0.405

X*=0773
4 phenotyplc classes — 1 =3 degrees of freedom. Referring to page 138 in your textbook,
a X* value of 0.773 with 3 degrees of freedom corresponds to a p value between 0.5 and
0.9. This p supports the likelihood that this trait is controlled by twe genes that
independently segregate.

2d.
This data fits a model in which there are two genes influencing coat color, with the “tan
gene located on the X-chromosome and the “black” gene located on an autosome. In this
case the parental female would be B/B XYX' and the parental male would be b/b X'/Y,
The F; males would have the genotype B/b XY (black), and F, females would have the
genotype B/b X /X! (gray).

In the F; generation there weuld be the same four phenotypic classes as in problem 2b,
but a dlffcl" nt ratios. The ratios would be 3 gray: 3 black: 1 tan: 1 dark i
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2e. The calculation for the phenotypic ratios for F; is simplified if you consider the
frequency of the two genes separately. Considering the trait for black coat color first, the
alleles segregate identically in both males and females in the F; at a ratio of
1BB:2Bb:1bb. The trait for tan coat color will appear 3X7Y:1X'Y in males and
3XTXT:4XTXN XK for females,

To determine the frequencies of the complete genotypes for Fs, simply multiply the
probabilities for each trait together. The results of this multiplication would be:

Male Female
Genotype Probability = Phenotype  Genotype Probability = Phenotype
BBX'Y 3/16 Gray BBX'X' 3/32 Gray
BBX'Y 1/16 Black BBX'X' 4/32 Gray
BbX'Y 6/16 Gray BBX'X' . 1/32 Black
BbX'Y /16 Black BbX' X" 6/32 Gray
bbX'Y 3/16 Tan BbX'X! 8/32 Gray
bbX'Y 1/16 D.Brown  BbXX 2/32 Black
bbX X" 3/32 Tan
bbX X 4/32 Tan
bbX'X! 1/32 D. Brown

The F; phenotypic ratio for males will be 9Gray:3Black:3Tan:1DB. For females the F;
phenotypic ratio will be 21Gray:7Tan:3Black:1DB.




7.03 Problem Set 1 Solutions

3a.  40% will express trait 1
40% will express trait 2
10% will express neither
10% will express both

3b.  40% will express neither
40% will express both
10% will express trait 1
10% will express trait 2

3c. Same as 3b.

3d.  The genotypes of the F; generation can be determined to be 12/++ for the female
and +2/1+ for the male. This means that there are several possible genotypes for the.
mother of the unknown child. There can basically be 5 genotypes that will allow the
mother of the unknown to be unaffected by either trait, each occurring at the following
rates:

Genotype Probability  Phenotype

++/++ 4/54 Normal
++/+2 17/54 Normal
++/1+ 17/54 Normal
++/12 8/54 Normal
+2/1+ 8/54 Normal

Now each of these possible genotypes have to be crossed with the doubly homozygous
male. The easiest way to do this is consider each case separately and then weight the
ratios with the probability of each genotype for the mother

The final answer will be

25/54 WT 2/27 Both 25/108 Trait 1 25/108 Trait 2

(It doesn’t add up to 100 because percentages are approximate)



Problem Set 1
Detailed Solutions

| think the answers to Problem 1 are relatively complete. If you need more help
understanding this problem, please come to Office Hours and we’ll discuss it...

#2

a. (2 pts) If one gene determines coat color, then the co-dominance (or incomplete
dominance, depending on whether you consider gray a mixture of tan and black or a
separate color) explains the appearance of three phenotypes.

b. (2 pts) The answer key seems clear about this one...you need at least two genes to
explain 4 phenotypes. (only three phenotypes are possible in a one gene model)

c. (2 pts) In the Chi-square test, in order to calculate the expected values, you must
take the observed total number of progeny and divide into the appropriate
frequencies for each class...

e.g. Since there are 50 total progeny, the expected values are 28.125, 9.375,
9.375, 3.125. It’s OK that these are fractions since this is a statistical test.

d. (2 pts) The fact that the ratio of phenotypes between males and females is different
alerts you to a sex-linked trait. You must, however, still account for the 4
phenotypes in part b...thus two genes must be involved. To be consistent with the
data already presented in (b), only one gene can be sex-linked. The frequencies can
be determined by dealing with each gene independently since neither is linked.

(Black female) (tan male)
B/BXY/X' x b/bX'/Y

F1 B/bXYX" x B/bX/Y
(gray females) (black males)

For the autosomal gene in the F2: For the sex-linked gene in the F2:

BB 1/4 females: males:

Bb 2/4 XXT 1/2 XT/Y 172

bb 1/4 xt/xt 1/2 XY 172
Females: Males:

B/B XY/XT (1/4)(1/2) = 1/8 gray

B/B X'/X* (1/4)(1/2) = 1/8 black

B/b Xt /X" (1/2)(1/2) = 2/8 gray

B/b X/X' (1/2)(1/2) = 2/8 black

B/b X4/XT (1/4)(1/2) = 1/8 tan

B/b XY/X' (1/4)(1/2) = 1/8 dark brown

B/BX'/Y (1/4)(1/2) = 1/8 gray
B/B X'/Y (1/4)(1/2) = 1/8 black
B/b X'/Y (1/2)(1/2) = 2/8 gray
B/b X'/Y (1/2)(1/2) = 2/8 black
b/b XT/Y (1/4)(1/2) = 1/8 tan
b/b X*/Y (1/4)(1/2) = 1/8 dk brn



e. For this section of the problem the cross is as follows:

(Tan female) (black male) *note that this is the reciprocal cross from d.
b/b X'/ X' x B/B X'/Y
F1 B/b XY/X' x B/bX'/Y
F2 B/BXYX' 1/8 B/BX/Y 1/8
B/B XT/X" 1/8 B/BX'/Y 1/8
B/b X/XT 2/8 : B/b Xt/Y 2/8
B/b XT/X" 2/8 B/b X'/Y 2/8
b/b Xt/XT 1/8 b/b Xt/Y 1/8
b/b XT/XT 1/8 b/b X'/Y 1/8

F3 You can deal with each locus independently:

For the "B” locus: there is an equal number of each allele in the population. Since
the F2 will be mating at random, you can follow the probability of an F3 inheriting a
certain allele, instead of following each of the possible crosses.

For instance out of 8 possible alleles:

B/B  There is a 1/4 probability that a parent of this genotype will donate an
allele to the progeny, and then if this parent does donate an allele, a 100% probability
that the allele will be B. (1/4)

B/b  There is a 1/2 probability that a parent of this genotype will donate an
allele to the progeny, and then if this parent does donate an allele, a 1/2 probability
that the allele donated will be B. (1/4)

There is a 1/2 probability that a parent of this genotype will donate an
allele to the progeny, and then if this parent does donate an allele, a 1/2 probability
that the allele donated will be b. (1/4)

b/b  There is a 1/4 probability that a parent of this genotype will donate an
allele to the progeny, and then if this parent does donate an allele, a 100% probability
that the allele will be b. (1/4)

Thus, both alleles can be donated with equal frequency (1/4 + 1/4) = 1/2

So the ratios for this locus in the F3 are:



y

So the ratios for this locus in the F3 are:
B/B (1/2)(1/2) = 1/4

B/b (1/2)(1/2) +) _ 2
b/B (1/2)(1/2) }"A
b/b (1/2)(1/2) = 1/4

At the other locus, the same principle can be applied:
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3.a.(2 pts) Given that the parents genotypes are 12/12 and 1+/+2,
For trait 1: the only possible genotype is 12/1+. This genotype will result if:
a. there is no recombination in the gamete of the mother (.8) AND
b. she donates the 1+ gamete (.5)
Thus, the probability that the child will express Trait 1 is (.8)}(.5) = .4

For trait 2: the only possible genotype is 12/+2. This genotype will result if:
d. there is no recombination in the gamete of the mother (.8) AND
e. she donates the +2 gamete (.5)

Thus, the probability that the child will express Trait 2 is (.8)(.5) = .4

For both: the only possible genotype is 12/12. This genotype will result if:
a. there IS recombination in the mother (.2) AND
b. she donates the 12 gamete (.5)

Thus, the probability that the child will express both traits is (.2)(.5) = .1

For neither: the only possible genotype is 12/++. This genotype will result if:
d. there IS recombination in the mother (.2) AND
e. she donates the ++ gamete (.5)

Thus, the probability that the child will express neither trait is (.2)(.5) = .1

b. (2 pts) Given that the parents genotypes are 12/12 and ++/12,
For trait 1: the only possible genotype is 12/1+. This genotype will result if:
a. there IS recombination in the mother (.2) AND
b. she donates the 1+ gamete (.5)
Thus, the probability that the child will express Trait 1 is (.2)(.5) = .1

For trait 2: the only possible genotype is 12/+2
a. there IS recombination in the mother (.2) AND
b. she donates the +2 gamete (.5)
Thus, the probability that the child will express Trait 2 is (.2)(.5) = .1

For both: the only possible genotype is 12/12. This genotype will result if:
a. there is no recombination in the gamete of the mother (.8) AND
b. she donates the 12 gamete (.5)

Thus, the probability that the child will express both traits is (.8)(.5) = .4

For neither: the only possible genotype is 12/++. This genotype will result if:
a. there is no recombination in the gamete of the mother (.8) AND

b. she donates the ++gamete (.5)
Thus, the probability that the child will express Trait 2 is (.8)(.5) = .4

c. (2 pts) Given that the parents’ genotypes are 12/12 and 12/++... the answer is the
same as for b.



d. (4 pts) Given that the mother’s genotype can not be definitively determined, this
part must be done in two steps.

First, identify the possible genotypes of the mother and determine their relative
frequencies. There are five possible genotypes for the mother:
++ /4t +2/1+ 2+ T+ /12

To determine the relative frequencies of each genotype, you can apply a version
of a Punnett’s square, with her father’s possible gametes and the probability of
each gamete being donated to the child along one side of the square, and the
mother’s on the other side. The probability for each gamete is determined as in
parts a-c

her father’s gametes

1+  (.A4) 2 (.4) + (1) 12 (1)
wr (.4) T/++ (A0 #2/++ (DA [ ++/++ (0)(4) | ++/12 (1)(.4)
12 (.4) ++/12 (1) (.4)
1+ (A1) 271+ (A1) | +/1+ (D)
2 (1) 1+/+2_ (.4)(1) /42 ()(A)

I have only filled in the relevant squares, the genotypes that are possible for the mother,
given that we know she is unaffected by either trait. We know the mother cannot be any
of the other genotypes; therefore, to determine the RELATIVE frequencies of the five
possible genotypes we must normalize the values in the table.  Earlier in the class we
defined probability as the number of outcomes that satisfy our conditions divided by the
total number of outcomes. In this case , the number of outcomes is the sum of the
probabilities that one genotype occurs divided by the sum of the probabilities in the
filled in squares (which becomes our value for the number of possible outcomes).

For ++/++ 0.04/0.54

For ++/1+ (0.16 + 0.01)/0.54
For ++/+2 (0.16 + 0.01)/0.54
For ++/12 (0.04 + .04)/0.54

For +2/1+ (0.04 + 0.04)/0.54

For Trait 1:
Three of the genotypes listed above can yield gametes, which, when combined with the

father’s 12 gamete will result in a child with only trait 1. (++/1+, ++/12, +2/1+).



The probability that the child will have only trait 1 can be calculated as follows:
™At iz T2+
(1/2)(.174.54)+ (1/2)(.08/.54)(.2) + (1/2)(.08/.54)(.8) = .23%
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For Trait 2: game genotypt

Three of the genotypes listed above can yield gametes, which, when combined with the
father’s 12 gamete will result in a child with only trait 2. (++/+2, ++/12, +2/1+)

This value is the same as for Trait 1, calculated in an identical manner. = .23

For both traits:

Two of the genotypes listed above can yield gametes, which, when combined with the
father’s 12 gamete will result in a child with both traits. (++/12, +2/1+)

The probability that the child will have both traits can be calculated as follows:

(1/2)(.08/.54)(.8) + (1/2)(.08/.54)(.2) = .07
Az Y204

For neither trait:
All of the genotypes can result in a child expressing neither of the two traits.

This probability can be calculated as follows:

[04/.54 + (1/2)(.17/.54) + (1/2)(.17/.54) + (1/2)(.08/.54)(.2) + (1/2)(.08/.54)(.8) = W,

s e S t I+ ++
+ N 2 1z



/;()

7.03 Problem Set 2

Due before 5 PM on Thursday, October 1
Hand in answers in recitation section or in the box outside the class

1. Two different true-breeding Drosoplila lines are crossed and F1 females from this
cross are then crossed to males from a line that is homozygous for four different
recessive traits. A total of 1000 progeny from these crosses are then evaluated for
each of the four traits. For simplicity, the recessive traits will be designated a, b, ¢,
and d while the corresponding dominant traits will be designated with a “+”". The
phenotypes and number of each of the sixteen possible phenotypic classes are

given below:

Phenotype Number Phenotype Number
a b c d 2 + b cd 200"

+ + + + 2 a + + + 208

a b ¢ + 11 a b + + 9“

+ + + d 10 + + ¢ d 12

a b + d 1 a + + d 31

+ 4+ C + 3 + b ¢ + 36

a + ¢ d 34 ' + b + d 195 4
+ b + + 41 a + ¢ + 205

(a) What can you conclude about the phenotypes of the two true-breeding parental
lines. It will not be possible to specity their phenotypes exactly so please note the
nature of the ambiguities that remain. (Hint: before you begin your analysis, it might
be helpful to use two-factor cross data to determine which genes are linked.)

(b) Draw a genetic map showing the relative positions and genetic distances
between the genes for each of the four traits. Linked genes should be grouped
together on the same chromosomal segment and any unlinked genes should be
placed on a different chromosomal segment.



2. (a) There are on average a total of 50 chiasma per meiosis in human males.
How many chiasma per meiosis should there be in females, given that the total length
of the genetic map measured in females is twice that of males.

{b) Consider two human genes that are 10 cM apart. Imagine there that there are
features on the chromosomes at the positions of each of the genes that are visible in a
microscope observing meiosis in the formation of sperm. If a large number of male
meiotic cells were examined, what fraction of these would have a chiasma between
the two chromosomal features that are 10 cM apart? Assume that every chiasma
leads to a crossover between two of the homologous chromatids and ignore the
possibility of double crossovers and crossovers between sister chromatids.

(c) Consider two autosomal markers that are found to be 8 cM apart as determined
by crosses in the general human population (recombination within males and females
are determined with equal frequency). If only crosses where recombination in males
were considered what would the measured distance between the markers be, given
(as above) that the total length of the genetic map measured in females is twice that of
males.



7.03 Problem Set 2 Solutions
Friday, October 2, 1998

Problem 1

Part (2) (5 points)

Two true-breeding parents had offspring that included the F1 females that were test crossed with true-
breeding recessive males to give the progeny data. By finding which markers are linked and are traveling
on the same chromosome in the F1 females, you can get the phenotypes of the true-breeding parents.

Begin by evaluating the combinations of 2-factor cross data:
(i) analysis for markers a &b

ab=2+11+1+9=23 (rec)
++=2+10+3+ 12 =27 (rec)
a+=34+208 + 31 +205 =478 (par)
+b= 41+200+ 36 + 195 =472 (par)

a & b are linked => distance = 100 x 50/1000 =5 cM
a+
parental => ~-----
+b
(ii) analysis for markersa & c
ac=2+11+34+205=252
++=2+10+41+195=248
a+=1+208+9+31=249
+¢=3+200+12+36=251
all classes are equally represented, so a &c are unlinked.
(iii) analysis for markers a & d
ad=2+1+34+31=268 (rec)
++=2+3+41+36=282(rec)
a+=11+208+9+205=433 (par)
+d=10+200+ 12 + 195 =417 (par)
a &d are linked => distance = 100 x 150/1000 = 15 cM
a-+

parental => -------
+d

(iv) 2-factor cross between b &c confirms that b is unlinked to ¢
{v) analysis for markersb & d
bd=2+1+200+195=398

++=2+3+208 +205=418
b+=11+41+9+36=97



+d=10+34+12+31=87
b & d are linked => distance = 100 x 184/1000 = 18.4 ¢cM
bd

parenta] => ----n-
++

(vi) 2-factor cross between ¢ & d confirms that they are unlinked.
genotype for F1 females (order not accurate at this point)

a+ +
+bd

Therefore, one parent exhibited trait “a”, and the other parent exhibited the “b” & “d” traits

Only one parent exhibited the “c” trait, but it is unclear which one, since “c” is unlinked and segregates
independently.

Part (b) (5 points)
We have three linked markers, so we can to a 3-factor cross to determine order:

abd=2+1=3

+++=2+3=5

ab+=11+9=20

++d=10+12=22

a++ =208 + 205 = 413---the fact that these classes are the highest confirms

+bd =200+ 195 = 395---the chromosomal marker locations for the F1 females above
a+d=34+31=65

+b+=41+36=77

Because the abd and +++ reciprocal class is the smallest, a crossover on both sides of the middle marker
would have to generate those recombinants. The order that fits this condition is:

4
I | i
X X
| | l

+ a +

so “a” is the middle marker.

Map:
b a d ¢ (different chromosome)
| 5cM | 15cM | |

The distance calculated with a two-factor cross between the outer markers will tend to be less than the sum
of the internal intervals, because the calculation is not accounting for double crossovers that restore the
parental gametes.




Also, preliminary appraisal of the data shows that there are four classes that have the same high frequency.
This means that not all of the traits are linked, one of them is unlinked/independent. Because “c”

segregates with b & d
and with “a” at the same frequency, it must be in a different linkage group than a, b, & d. The 2-factor

crosses confirm this.

Problem 2
Part (a) (3 points)

Since physical distance in males and females is the same, then the # of chiasma per meiosis is twice as high
in females than in males (ie. 100 chiasma per meiosis), because

genetic map distance/recombination rate = physical distance

Part (b) (4 poii_zts) CS? ¢ wext page For Corvectiows ! >

The 10 cM distance in this question was arrived at in the same way as the 8 cM distance in part ¢: by
crosses in the random population, in which males are as equally likely to be the heterozygote as the
females. This question is asking for the chiasma in the males only. First you should calculate the distance

in just the males:

y = male distance ‘ .
2y = female distance (since the genetic distance in females is twice that in males)

(y+2y)2=10

y = 6.666

2y =13.333

Now we can use the male genetic distance 0f 6.666 ¢M to determine the number of chiasma:
6.666 cM = 100 x (# of recombinants)/total # of recombinants = 2 x # of chiasma

6.666 cM = 100 x (2 x # of chiasma)/total

# of chiasma/total = 1/30

Part (c) (3 points)

One way to look at this problem is that the human equivalent of a test cross was done with homozygous
males to check the passing of alleles from the mother, and also with homozygous females to check the
recombination in the father. The data had a half-and-half distribution of the crosses, and the resulting
distance was 8cM. The questions is asking for the distance calculated if only the crosses with heterozygous
males and homozygous females are used.

If y = distance using only male recombination data
then 2y = distance using only female recombination data

(y +2y)/2 = 8cM
y=5333 cM



‘ Problem Set 2 Correction

2b.
Method 1

If you thought the 10 cM distance given in the problem was from both males and females, proceed as in the original solutions
to get the male-only distance of 6.666 cM.

6.666 cM = 100 X 6.666 recombinant gametes
100 total gametes

Now we can use a few conversion factors to “change units” from recombinant gametes/total gametes to chiasma/meiotic cells:

6.666 recombinant gametes X 1 chiasma X 4 gametes = 13.333 chiasma
100 total gametes 2 recombinant gametes meiotic cell 100 meiotic cells

13.333% of the male meiotic cells you examined would have a chiasma between the two features.
Method 2

If you thought the 10 ¢M distance given in the problem was from males only, use that distance in the same way as above.

10 cM = 100 X 10 recombinant gametes
100 total gametes

. 10 recombinant gametes X 1 chiasma X 4 gametes = 20 chiasma
100 total gametes 2 recombinant gametes meiotic cell 100 meiotic cells

20% of the male meiotic cells you examined would have a chiasma between the two features.



7.03 Problem Set 3
. due before 5 PM on Thursday, October 15
Hand in answers in recitation section or in the box outside the class
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2. From the table for the genetic code shown on p. 397 of Griffiths et al., you can see that
@ of the 64 possible triplet codons, 61 code for amino acids and only 3 code for chain

> termination signals. Of course, at the time that the experiments to show that the genetic code
was read in triplets were carried out, it was not known whether any more than 20 of the
triplets would specify amino acids. Nevertheless, the authors of the triplet code paper were
able to deduce that most triplets must code for one or another amino acid and not a stop,
simply because so many of the reciprocal frame shift mutant pairs that were examined
actually gave a functional protein. To understand this logic, assume that there are two frame
shift mutations (one + and the other -J, that are 60 nucleotides apart. Knowing that only 3/64
of the codons specify a stop, calculate the probability of not encountering a stop codon in the
out of frame sequence that lies between the two frame shift mutations. Next, assume that
only 20 of the triplets code for amino acids and the rest specify a stop, recalculate the
probability of not encountering a stop codon in the out of frame sequence that lies between
the frame shift mutations.

3. Consider the E. coli genes pyrF and trpA which are linked by a cotransduction

fréquency of 50%. You have isolated two different trpA mutations, designated trpA-1 and

trpA-2. These two mutations show linkage to each other by a codransduction frequency of

95%. You would like to determine the[arded of trpA-1 and trpA-2 relative to pyrF. Clearly,

three factor crosses are the way to do this but there are a number of different ways that a
.,, three factor cross could be set up.

(a) One way to do a three factor cross would be to grow phage P1 on a pyrF* trpA-1— host
and then infect a pyrF~ trpA-2~ recipient, selecting for pyrF*. Then the fraction of trpA+
transductants can be counted to determine the order. Draw out the two possible orders and
estimate the frequency of pyrF* that will also be trpA™ for each order. Because the
transductional mapping fiRction is complex, you will not be able to calculate these
frequencies exactly - just make the best estimate that you can.

(b) You will see that the differences in transduction frequency for the two orders will not be
so great that you would want to draw a conclusion from the a single absolute determination of
cotransduction frequency. Usually the most reliable way to make such determinations of
order would be to compare the relative frequencies of two related cotransduction
experiments. Propose another three factor cross that you could do to give a cotransduction

frequency to which the frequency in part a could be usefully compared.



{c) Another way to perform a three factor cross would be to set up the same transduction
experiments as described in parts a and b, but instead to select for trpA+ and then to
determine the fraction of these transductants that are pyrF*. Describe how you would do
each of two relevant three factor crosses. Draw out the two possible orders and then
“ estimate the relative frequency of pyrF* transductants that would be expected for each
order, in each of the two three factor crosses.. <



Problem Set 3 Solutions

2.
probability of not encountering a stop codon in the 20 codons = probability that each
codon'is a coding codon = (61/64)* = 0.38

probability of above if only 20 triplets code for amino acids = (20/64)* = 7.9 x 10"

3. _
a) Assuming that the given percentages of cotransduction frequencies incorporate
probabilities of P1 phage heads packaging the gene markers together and also of a cross
over not occurring between the two markers, the percentages can be used to denote
approximate distances between markers.

experiment 1:
donor genotype- pyrF”, trpA-17, trpA2*
recipient genotype- pyrF , trpA-17, trpA2°

mode] 1
Ry CHNPTSy W L
X X
pytF” trpA2 - trpA-17T - -> wt via double crossover

pyrF*is selected for, so all surviving recipients will have received the pyrF*. The
cotransduction frequency for pyrF and trpA is 50%, so in effect, if a recipient becomes
pyrF*, 50% of these will have a crossover between pyrF and trpA markers while 50%
will not. The cotransduction frequency of trpA-1 and trpA2 is 95%, so 5% of recipients
receiving one allele of trpA from transduction do not receive the other allele because of a
crossover. If the gene order is pyrF, trpAl, trpA2, then the probability of a transduction
event occurring with the required crossovers to generate a wildtype (pyrF* and trpA*) is
approximated by the following equation:

. 50/100 * 5/100 = 2.5%

g *) 28 T trpA-17--- trpA27---
X X , X X _
----- PYTF wermmmmmemnnee fTPA-1"-- trpA2°----— > wt via quadruple crossover




&

If the gene order is pyrF, trpAl, trpA2, then four crossover events must occur to render
the recipient pyrF* and trpA*. The probability of the first cross over and the second
crossover occurring is 2.5% again, but there is also another crossover that must occur
after trpA2, and hence the probability is actually less than 2.5%. Hence, this experiment
does not resolve the ambiguity of the gene order between the positions of the two trpA
mutations.

b) If another experiment is set up such that relative frequencies between the two
experiments can be compared, it becomes possible to determine the gene orders

experiment 2:
donor genotype- pyrF*, trpA-17, trpA2°
recipient genotype- pyrF’, trpAl’, trpA2*

model 1
e PYTF e trpA2 ---trpA-1"---
X X X X
pyrE” trpA2*---trpA-1"------ - wt via quadruple crossover
model 2
i 5) ¢ SEEEEEREEE trpA-17---trpA2°---
X X

PYIE =mmmmm e ae trpA-1"-—-trpA2*------ - wt via double crossover

(ie. if experiment 1 has a lower frequency of wt recombinants, then model 2 is likely; if
experiment 2 has a lower frequency of wt recombinants, then model 1 is likely)

¢) The same experiment can be set up with a screen for trpA instead of pyrF, and a
similar logic can be applied to determine gene orders but the expected frequencies will be
different from the above experiments.

experiment 1:
donor genotype- pyrF’, trpA-17, trpA2*
recipient genotype- pyrF, trpA-17, trpA2”

model 1
S0 40 JACEEREREE trpA2*---trpA-1"---
X . X
pyrE" - trpA2 -—-trpA-1Tememen -> wt via double crossover



If the gene order is pyrF, trpA2, trpAl, then ~ 50% of recombinant trpA” transductants
will be pyrF" due to cotransduction.

mode] 2
~PYIFmmeme oo trpA-1"--- trpA2*---
X X X X
pyrE- e trpA-1"-—- trpA2"------ -~ wt via quadruple crossover

If the gene order is as per model 2, then <50% of recombinant trpA” transductants will be
pyrF* because most of the trpA cells will not have undergone a second double crossover
to receive the pyrF" allele. Though the actual percentages are difficult to derive beyond
approximation without actually performing the experiment, a separate experiment done in
parallel can be used to compare relative frequencies of pyrF™ transductants to deduce the
correct model.

experiment 2:
donor genotype- pyrF*, trpA-1%, trpA2”
recipient genotype- pyrEF’, trpAl’, trpA2°

model 1

) S trpA2 ---trpA-17---

X X X X
----- PYIE -memmmmmmmn AP A2 - trpA-17------ > Wt via quadruple crossover
model 2

002 8 SACEREE R trpA-1T---trpA2 -

X X

pyrEF- trpA-1"---trpA2*------ —~> wt via double crossover

Hence, comparing the frequency of pyrF” transductants from the two experiments, if the
frequency is higher for experiment 1, then model 1 is correct. If the frequency is higher
for experiment 2, then model 2 is correct.




7.03 Problem Set 4
due before 5 PM on Thursday, October 22
Hand in answers in recitation section or in the box outside the class

1. A region of the E. coli chromosome contains three markers in the following order:

ArgA —ThyA — LysA. You have isolated an Hfr that transfers LysA within the first 10 minutes
of an interrupted mating experiment, but transfers ArgA or ThyA only after more than 90
minutes of mating.

a) Draw a diagram showing how the F factor integrated into the bacterial chromosome.
Show the orientation of the origin of transfer and the location of ArgA, ThyA, and LysA.

b) In an F- strain, the markers ArgA and ThyA show linkage of 50% cotransduction. Given
that the length of the F plasmid and the P1 phage are about the same, what will the
cotransduction frequency of ArgA and ThyA be in the Hfr that was isolated above?

c) Describe How you would isolate an F’ that carries the ThyA and LysA genes (include
complete genotypes of the strains that you would use, including any relevant markers such
as streptomycin resistance). Will every F’ that carries ThyA also necessarily carry LysA? And
will every F’ that carries LysA also necessarily carry ThyA?

2. The region of the E. coli chromosome surrounding the Lac operon contains the
-markers PhoA — Lac | — LacZ,Y,A — ProB. Lac and phoA are about one minute apart and
Lac and ProB are about two minutes apart. You have isolated an F’ from a LacZ  strain that
contains the entire Lac region but does not contain either PhoA or ProB. In order to identify
Hfrs that come from the F’ strain you mate 100 individual colonies of a PhoA* LacZ* ProB+/
F' LacZ~ StrsS strain to an F~ PhoA™ LacZ™ ProB~ Strf recipient, selecting for Str" and then
screening for PhoA™ or ProB”. Out of the 100 colonies tested, 3 have the ability to transfer
ProB+ efficiently but none have the ability to transfer PhoA+ efficiently.

a) Draw the structure of the F’ showing the orientation of the origin of transfer relative to the
orientation of the Lac operon.

b) One of the three Hfr strains isolated above transfers Lac* efficiently and early. Draw a
diagram of the recombination event that converted the F’ strain into to this Hfr strain. Be sure
to include the positions of the relevant PhoA, ProB, and LacZ alleles.

¢) You next move the F' into a strain that is F~ PhoA* LacO® ProB”. Because of the LacO°®
mutation this new F' strain expresses B-galactosidase constitutively. From this strain you
isolate a rare derivative that shows normal inducible regulation of B-galactosidase. Will this
derivative transfer the inducible Lac operon early or late? To explain your answer, diagram
the recombination event that gives the normally regulated B-galactosidase.




3 Consider a hypothetical operon that controls the ability of E. colito utilize sucrose by
controlling the synthesis of a sucrose permease and the enzyme sucrase. When glucose is
available as a carbon source, the synthesis of both the permease and sucrase is shut off:

- glucose + glucose
sucrase high low
permease high low

There are three linked mutations (A—, B™, and C™) which alter the expression of sucrase
activity in response to glucose. You construct the following bacterial strains and analyze the
regulation of sucrase and permease.

Sucrase activity Permease activity
Genotype - glucose  + glucose - glucose  + glucose
A- B+ Ct v low low high low
A+ B~ Ct low low low - low
AT BT C high high high high
~A— Bt Ct/F At B+ C+ high low high low
At B- Ct/F At BY C* low low low low
At B+ C~/F A+ B+ C*t high high high high
A= B~ Ct/F At Bt Ct fow low low low
A= BT Ct/F A+ B~ C* low low low low
A- B+ C-/F At B+ C* high low high high
A- Bt C+/F At Bt C~ high high high high

a) Propose a molecular model for sucrase regulation that explains the nature of the A, B,
and C mutations and how glucose shuts off sucrase expression. Be as specific as you can.




b) Based on your model from part (a),how would you expect sucrase expression in a strain
with the genotype AT B~ C~ to respond to glucose?

You have isolated a dominant mutation, D9, involved in regulation of sucrase activity, that is
- unlinked to the A, B, or C mutations. You construct the following strains to analyze how this

mutation affects sucrase regulation:
Levels of sucrase activity

Strains - glucose + glucose
A+ B+ Ct Dt high low
A+ B+ G+ Dd high high
A+ B— C+ Dd » low low

¢) Propose a mechanism to explain how the Dd mutation fits into the model that you
proposed above. Also propose new possible mechanisms for the B~ mutation and the action
of glucose in light of the existence of the DI mutation.




/S PROBLEM SET 4 SOLUTIONS

&

1. a) The F plasmid has integrated between the Thy A gene and the LysA gene,
. oriented such that LysA will be transferred early and ThyA late.

/b r:plaswﬁd

. -Chromosome
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b) Since the F plasmid has not changed the distance between the ArgA gene
and the ThyA gene, their cotransduction frequency will remain 50% in the Hfr.

c.) The object here is to find a rare, specific excision event among a
population of Hfr cells (see below). This F’ can be isolated by mating the
above Hfr population (that is streptomycin sensitive) with a streptomycin
resistant, ThyA-, LysA-, F- strain. After a brief mating, select for str’, LysA+,
ThyA+. Only those cells that have received an F’ containing LysA+ ThyA+
will be able to grow and form colonies. When the other Hfr cells (which do
not contain an F’ ) transfer, they will transfer LysA+ early, but the mating will
be disrupted before ThyA+ is transferred.




2.a) The structure of the F’ is seen here:

b) Although the LacZ gene is defective on the F’ and on the chromosome, the
two LacZ- alleles may not be due to the same mutation. If this is the case, then
an integration/recombination event could have occurred as diagrammed below.
Note, this event happens after the transfer of the F' to the F-.

~ATTT

LIS

N=— 1/




2. c) If the integration recombination event occurs as diagrammed below, then
7 the O° mutation will be in ¢is to the LacZ- mutation, while the wildtype operator will

be adjacent to the wildtype copy of LacZ. This will result in normal, inducible
expression of LacZ.

W

M

\‘\§\

N\

mutation




3. a. The A mutation selectively affects sucrase function without disturbing
permease function (line 1). From the data in line 4, we see that the A mutation is
recessive to wildtype, since the mero-diploid is normally induced. A simple
explanation for these data is that the mutation is a loss of function mutation in the
sucrase gene itself.

The B mutation is uninducible since both sucrase and permease activities
are low even in the absence of glucose. From the data in line 5, we see that the
B mutation is dominant, and from the data in lines 7 and 8, we see that the B
mutation is {rans-acting. This can be explained if the B mutation is in the
repressor for the sucrose operon, creating a super-repressor.

The C mutation is constitutive, since the sucrase and permease activities
are high even in the presence of glucose. From the data in line 6, we see that
the C mutation is dominant, and from the data in lines 9-10, we see that the C
mutation is cis-acting. (We can only see the constitutive phenotype of the C
mutation when it is on the same piece of DNA as a wildtype copy of the A gene).
This suggests that the C mutation is in the operator, the binding site for the
repressor. The repressor cannot bind the mutant operator.

Model:

In the presence of glucose, glucose binds the repressor, enabling it to bind the
operator and prevent expression of the sucrose operon. In the absence of
glucose, the repressor can no longer bind the operator, and expression of the
sucrose operon is induced. The B mutation enables the repressor to bind the
operator even in the absence of glucose.
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b.) In strain with the genotype A*B°C’, the operator mutation would prevent
binding by the mutant repressor. Therefore, sucrase expression would be
constitutive in this strain, and the C mutation is epistatic to B". (Since the
phenotype of the double mutant is constitutive, C must be acting downstream of
B.
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PROBLEM SET 6 ANSWERS

1. You are studying the regulation of the mitose metabolism. Mitose is a
fictional sugar which is metabolized by the MIT10 gene. MIT10 gene
expression requires the MIT1 and MIT2 genes and is induced by the presence
of mitose. MITZ2 is an activator of MIT10 gene expression and has two
domains, a DNA- binding domain and an activation domain. MIT1is a
repressor of MIT10 gene expression, which binds to the activation domain of
MIT2 while MIT2 is on the DNA. You collect 3 mutants which are defective in
MIT10 expression and want to learn more about them. You do the following
experiments:

MIT10 levels
+mitose -mitose
wt 200 1
A- 200 200
B- 1 1
C- 1 1
mitl-1 200 200
mit2-1 1 1
A-/A+ 200 200
B-/B+ 200 1
C-/C+ 1 1
mitl-I/MIT1 200 1
mit2-1/MIT2 200 1

a.) Describe the nature of the A, B, and C mutants and how they affect the
regulation of MIT10 expression. e

A: constitutive, dominant
B: uninducible, recessive
C: uninducible, dominant

You construct the following strains and measure their MIT10 levels:

MIT10 levels
+mitose -mitose
A-/mit2-1 200 200
B-/mit2-1 1 1
C-/mit2-1 1 1

b.) Are any of the A, B, C mutants in MIT2? If so, which one(s)?

Yes, B- is a mutation in the MIT2 gene. Since mit2-1 in the diploid
strain is not able to complement the B- mutation.
(You can only do complementation testing with recessive mutants.)



(Actually, A- is in the MIT2 gene, but it is not able to be determined
from this data, as you cannot do complementation testing with
dominant mutants)

You mate the A- mutant to the mitl-1 mutant. You take the resulting diploid,
and put it under starvation conditions so that it sporulates. When you dissect
300 tetrads and test the spores for MIT10 levels, you find 3 different classes of
tetrads. 48 are of class I, 51 are of class II, and 201 are of class II1.

When you mate the A- mutant to the mit2-1 mutant and then sporulate the
diploid, you find that all 300 tetrads which you dissect are of class IV.

MIT10 levels
+mitose -mitose

class I:
all 4 spores 200 200
class II:
2 spores 200 200
2 spores 200 1
class III:
3 spores 200 200
1 spore 200 1
class IV:
2 spores 200 200
2 spores 1 1

c.) In which gene is the A- mutation and what is the nature of the mutation?’ ™
Explain.

A- is in the MIT2 mutation. When the A- mutation is mated to the mit2-
1 strain, only parental ditype tetrads are found, indicating that the A-
mutation is completely linked to the mit2-1 mutation (therefore, they
are in the same gene.)

Since the A- mutation leads to constitutive expression of MIT10, and
the A- mutation is in MIT2, the mutation most likely results in the
inability of MIT2 to bind MIT1 (the repressor), but still allows MIT2 to
activate MIT10 expression. :

You construct a fusion protein (MIT2-VP16) which has the DNA binding
domain of MIT2 fused to the viral activation domain of the VP16 protein. You
introduce it into the following strains and measure MIT10 levels:

MIT10 levels _ |
+mitose -mitose




wt, MIT2-VP16 200 200
C-, MIT2-VP16 200 200

d.) In which gene is the C- mutation and what is the nature of the mutation?

The C- mutation is in the MIT1 gene, and results in its acting as a
super-repressor. C- makes the MIT1 gene product insensitive to
mitose levels and therefore MIT1 always binds to the activation
doma}n of MIT2. In the MIT2-VP16 experiment, there is no activation
domam'to bind to, so expression is constitutive as MIT2-VP16 can

_ never bind MIT1 (regardless of the presence of the C- mutation).
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3. You are interested in studying the secretion of invertase in S. cerevisiae .
Yeast cells must secrete invertase in order to grow on raffinose. You have
isolated a few mutants that cannot secrete invertase and thus cannot grow on
raffinose. You have chosen one of these mutants to study in depth which you
call isdl for invertase secretion defect. In the course of your study, you have
isolated several different mutant alleles of ISD1 : isd1-1, isd1-2, and isd1-3 .

Strains containing each of these alleles, when mated to wildtype strains,
produce the following results when tetrads are dissected and grown on

raffinose:
2 alive:2 dead 100%

To study ISD1 more in-depth, you decide to conduct suppression analysis. You
mutagenize a strain containing isd1-1 and isolate several suppressors which

are now able to grow on raffinose.

a.) When you cross one of the suppressor strains to a wildtype strain you get
the following result when the tetrads are grown on raffinose:

4 alive: 0 dead 353 (100%)

Propose two models for the nature of this suppressor, and describe an
experiment that would distinguish the two models.

Only a single tetrad class is represented, which is the parental ditype
class. Thus, the two mutations (the suppressor mutation and the
original isd1-1 mutation are closely linked. Thus, the suppressor is
most likely intragenic or a true revertant. To distinguish these



