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Equilibrium experiments study how the concentration of reaction products change as a
function of reactant concentrations and/or reaction conditions.  For a typical bimolecular
equilibrium reaction such as A+B ⇔ AB, increasing amounts of reactant [A] might be
titrated against a fixed amount of the reactant [B] and the equilibrium concentration of the
product [AB] determined.
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The shape of the equilibrium curve depends upon the reaction mechanism and can be used
to decide between different equilibrium models.

Equilibrium constants

An equilibrium constant, designated by a upper case K, is the ratio of the equilibrium
concentrations of reaction products to reactants or vice versa.

For the bimolecular reaction, A+B ⇔ AB, we can define an equilibrium dissociation
constant (Kd) or an equilibrium association constant (Ka), which are reciprocally
related, as shown below:

Ka = [A][B]

[AB]
Kd  =

[A][B]

[AB]
  For bimolecular reactions, the units of Kd are concentration (M, mM, µM, etc.) and the
units of Ka are concentration -1 (M-1, mM-1, µM-1, etc.).
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For a unimolecular protein folding reaction, U ⇔ N, we can define an equilibrium
unfolding constant (Ku) or an equilibrium folding constant (Kf), which are
reciprocally related:

Ku  =
[U]

[N]
Kf  =

[N]

[U]
These equilibrium constants, like all those for unimolecular reactions, are unit less.

For any equilibrium expression, the direction of the reaction (i.e., dissociation vs.
association; folding vs. unfolding) is defined by going from the molecular species on the
bottom of the right side of the expression to those on the top.

The equilibrium constants for a reaction such as  nA + mB  ⇔ AnBm are:

Ka =
[A]n[B]m

[AnBm]
Kd  =

[A]n[B]m

[AnBm]

The value of any equilibrium constant will be    constant    only for a given temperature,
pressure, etc.  Thus, the equilibrium constants for the same reaction at different
temperatures (e.g., 20 °C vs. 37 °C) could be very different.

Why reactions come to equilibrium

Irrespective of mechanism, all reversible reactions reach an equilibrium distribution of
reactants and products when the rates of the forward and back reactions become equal.
Consider the overall rate at which [AB] changes for the reaction A+B ⇔ AB.

d[AB]/dt = kassn[A][B] - kdiss[AB]

If we initiated the reaction by mixing free A and free B, then the association rate
(kassn[A][B]) would dominate the reaction and the dissociation rate (-kdiss[AB]) would be
small because there would be very little AB complex.  As more complexes formed,
however, the association rate would begin to decrease and the dissociation rate would
increase because the concentrations of [A] and [B] would decrease and that of [AB] would
increase.  At some point the rates of the opposing reactions would become equal and the
there would no longer be any change in the concentrations of [AB], [A], and [B].
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d[AB]/dt = -d[A]/dt = - d[B]/dt = kassn[A][B] - kdiss[AB] = 0

Under these conditions

[A][B]

[AB]
=

kdiss

kassn
= Kd

This expression shows that the equilibrium concentrations of reactants and products will
have a constant ratio (Kd) that is equal to the ratio of the reverse and forward rate constants.
Kd is called an equilibrium dissociation constant.  The equilibrium concentrations of
reactants and products could also be characterized by an equilibrium association constant
(Ka) which is simply the reciprocal of Kd.

Determining Kd or Ka for bimolecular reactions

To study a bimolecular equilibrium reaction (A+B ⇔ AB) experimentally, one would start
by mixing free A and free B, or alternatively by diluting the AB complex, and then waiting
until there was no further change in the concentrations of [A], [B], and [AB].  The ratio of
the equilibrium concentrations as shown above then determines the value of Kd or Ka.  In
practice, equilibrium experiments are performed using many different initial concentrations
to ensure that the equilibrium model is correct and thus that the same value of Kd or Ka is
measured irrespective of the initial concentrations.  Typically, one fixes the initial
concentration of one reactant (e.g., [B0]) and then, in different experiments, adds
increasing initial concentrations of the other reaction [A0].  For each set of concentrations,
one waits until equilibrium is reached and then assays [A], [B], and [AB].  There are three
common ways to plot equilibrium data of this kind.

The first is a simple binding curve in which the fraction of B bound is plotted vs. the
concentration of free [A]
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The mathematical relationship between the fraction of B bound and the free concentration of
[A] is straightforward.

fraction B bound =
[AB]

[B]+[AB]
=

1

[B]

[AB]
+  1

=
1

Kd
[A]

+  1

=
[A]

Kd + [A]

This is an equation for a rectangular hyperbola and bimolecular binding curves are often
referred to as hyperbolic binding curves.

The fraction of B bound is often designated Θb, so that

=
[A]

Kd + [A]
Θb

It’s easy to see from this expression that if [A] = Kd, then Θb = 0.5.  Thus, half-maximal
binding of B occurs when the free A concentration is equal to Kd.  This makes it simple to
estimate Kd simply by inspection of the binding curve.  The same binding data is shown
below but plotted against log [A].
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For any bimolecular reaction, 10% of B will be bound when [A] =  Kd/9 and 90% of B will
be bound when [A] = 9Kd.  Thus, 80% of the binding reaction occurs over a concentration
range of about 80-fold in [A] centered around the Kd.

Bimolecular binding data can also be transformed into a linear form for plotting according
to the Scatchard equation.

=
[A]

Kd + [A]
Θb rearranges to ΘbKd + Θb[A] = [A]

ΘbKd/[A] + Θb = 1

ΘbKd/[A]  = 1 - Θb

Θb
[A]

=
Θb
Kd Kd

1
- +

Thus, plotting Θb/[A] as a function of Θb should give a straight line with a slope of
-1/Kd.  The Scatchard plot shown below is for the same data plotted in the binding curves
above.
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Hyperbolic binding curves and linear Scatchard plots are diagnostic of simple bimolecular
reactions.  Later on, we’ll show that higher-order reactions such as
 2A+B ⇔ A2B and 3A+B ⇔ A3B give Scatchard plots that are concave downward and
binding curves with sigmoid shapes.

Unimolecular equilibria

Equilibrium reactions, such as protein folding, that involve a conformational change in a
single molecule are generally studied by determining the concentrations of reactant and
product as a function of some environmental change that perturbs the equilibrium.
Perturbants might include pH, temperature, pressure, chemical denaturants, etc.  In the
example shown below, urea is used as a denaturant to study the unfolding of a monomeric
protein.

[U]Ku =
[N]
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Here, equilibrium constants (Ku) for protein unfolding can be calculated for each of the
urea concentrations from roughly 2 to 4.5 M where appreciable concentrations of both
folded and unfold protein are present.  For example, at 3 M urea, there are equal amounts
of native and denatured protein and thus Ku = 1.  To calculate Ku in the absence of urea or
at 8 M urea, however, we would need a model for how Ku changed as a function of [urea].
Generally, it is found that ln Ku varies linearly with [urea] concentration, allowing
determination of Ku in the absence of urea.

Common problems in measuring equilibrium constants

There are several common mistakes that can lead to the calculation of incorrect equilibrium
constants.

(1)  Using concentrations of species that are not equilibrium concentrations.  Any
equilibrium experiment has a kinetic component.  One waits a certain amount of time after
initiating the reaction before assaying products.  If this time is too short, the concentrations
of the reactants and products may still be changing.  A good test for whether a reaction is at
equilibrium is to see if the same final state is reached irrespective of whether the reaction is
started by adding reactants or products.

(2)  Using total concentrations not free concentrations in the equilibrium expression.

(3)  Using the wrong equilibrium model.  The ratio [A][B]/[AB] will only be constant at
equilibrium for the model A+B ⇔ AB.

Reactions involving changes in oligomeric form

Oligomeric proteins are very common in biology.  Consider a reaction in which two
molecules of free A combine with B to form an A2B complex without detectable
intermediates.

2A + B ⇔  A2B             Kd = [A]2[B]/[A2B]

To measure Kd, which has units of M2 for this reaction, we titrate increasing concentrations
of [A] against a fixed quantity of [B] and assay the fraction of bound B.  The equation
relating fraction B bound to [A] for this equilibrium model is:

fraction B bound =
[A2B]

[B]+[A2B]
=

1

[B]

[A2B]
+  1

=
1

Kd
[A]2

+  1

=
[A]2

Kd + [A]2

The binding curve for this equilibrium  model has a sigmoidal or S-shape as shown below.
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Notice also that Kd = [A]2 when half of the available B is bound.  Plotting this data on a log
scale emphasizes that the binding curve is steeper than for the simple A+B ⇔ AB case.
Now 90% of the binding reaction occurs within a 9-fold concentration range of [A]
centered around half-maximal binding.

1/2 max

   Kd = [A]2 = (5 nM)2

2A+B <=> A2B

0.0

0.2

0.4

0.6

0.8

1.0

10-11 10-10 10-9 10-8 10-7 10-6

log [A] (M)

fr
ac

tio
n 

B
 b

ou
nd

The Scatchard plot for this reaction is concave downward, which is diagnostic of a reaction
showing positive cooperativity1.  In this case, the cooperativity arises because A dimerizes
in the bound A2B complex.

                                                
1  For a reaction such as 2A+B ⇔ A2B, positive cooperativity means that potential intermediates in the
reaction (e.g., A2 or AB) are poorly populated relative to the end states at equilibrium.
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For the general case, where n molecules of A combine with one molecule of B to form a
complex:

nA + B ⇔  AnB             Kd = [A]n[B]/[AnB]

If intermediates are not populated, then:

fraction B bound =
[A]n

Kd + [A]n

Thus, for a fully cooperative reaction, as the number of subunits (n) increases, the plot of
fraction B bound vs. [A] becomes steeper and steeper.  The graph below shows plots for
n=1, n=2, and n=6 subunits.
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Binding in cooperative systems with large changes in oligomeric state can be
extraordinarily sensitive to small changes in ligand concentration.

Intermediates in Equilibrium Reactions

Complexes containing three molecules or more are unlikely to form in a single step in
which all of the molecules collide simultaneously.  Such reactions are much more likely to
proceed by successive bimolecular reactions.  For the 2A+B ⇔ A2B reaction, A might
dimerize first and then bind to B.  Alternatively, a single molecule of A could bind to B in
one step, followed by binding of the second molecule of A in a second step.  These
reactions would be written as:

2A + B ⇔ A2 + B ⇔ A2B

2A + B ⇔ AB + B ⇔ A2B

and are shown schematically for a DNA binding protein in the diagram below.

KKKK1111 KKKK 2222

KKKK3333
KKKK 4444

Either assembly pathway consists of two coupled equilibria.  In any set of coupled
reactions, one step affects the adjacent step only by changing the concentration of a
common participant through mass action.  If we consider the top K1K2 pathway, then the
coupled reactions are:

2A + B ⇔ AB + A K1 = [A][B]/[AB]
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AB + A ⇔ A2B K2 = [AB][A]/[A2B]

AB is the common species in the K1 and K2 equilibria.  Thus, increasing the
concentrations of free [A] or [B] in the K1 reaction would lead to an increased
concentration of [AB].  This, in turn, would result in a higher concentration of A2B in the
K2 reaction.  As shown below, A2 is the common molecular species in the K3 and K4
reactions.

2A + B ⇔ A2 + B K3 = [A]2/[A2]

A2 + B ⇔ A2B K4 = [A2][B]/A2B]

Notice that product of the equilibrium constants for the K1 and K2 steps is equal to the
product of the equilibrium constants for the K3 and K4 steps and that both products give
the equilibrium constant for the overall reaction.

K1K2 = K3K4 = Kd = [A]2[B]/[A2B]

This is always true in coupled equilibria because the concentration of the common species
drops out when the equilibrium constants for each step are multiplied.

In coupled equilibrium reactions, one question is whether the intermediate species will be
significantly populated relative to the end states.  The answer will depend on the relative
values of the equilibrium constants for each step.  If both steps are bimolecular, then
intermediate species would not be expected to be significantly populated if the first
equilibrium dissociation constant is significantly larger than the second equilibrium
dissociation constant and vice versa.

For the case described above, assume that the reaction proceeds by the K1K2 pathway with
K1 = 5•10-7 M and K2 = 5•10-11 M.  Thus, binding of the second A is much stronger than
binding of the first.  Intuitively, any concentration of [A] where [AB] would be expected to
form would be far in excess of the concentration required for binding of the second A.
Thus, the [AB] intermediate would not be expected to be significantly populated.  We can
also show this mathematically.  When [A] = 5•10-9 M,

[AB] = [A][B]/K1 = 0.01•[B]  and  [A2B] = [A]2[B]/K1K2 = [B]

Thus, the concentration of [AB] will only be 1% of the concentration of either [A2B] or [B]
and this intermediate is poorly populated relative to the end states.

When intermediates are present at    low      levels compared to end-states, they can effectively be
ignored for purposes of calculating the equilibrium constant for the overall reaction.  In the
case discussed, this is equivalent to making the approximations:

[B]total  =  [B] + [AB] + [A2B]  ≈  [B] + [A2B]
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[A]total  =  [A] + [AB] + 2[A2B]  ≈  [A] + 2[A2B]

which is clearly justified if K1 >> K2

What would happen if  K1 = K2 = 5•10-9 M.  Now, when [A] = 5•10-9 M,

[AB] = [A][B]/K1 = [B]  and  [A2B] = [A]2[B]/K1K2 = [B]

[AB] and [A2B] are now present at the same concentration and the presence of the
intermediate could not be ignored in equilibrium calculations.  In such a case, if one had an
assay that could distinguish AB from A2B (perhaps a gel-shift or footprinting assay), then
values of K1 and K2 could be calculated directly.

If, however, intermediates are substantially populated and the assay can not distinguish AB
from A2B, then both species would have to be included in calculating Θb, the fraction of
bound B.

Θb   =
[AB]+[A2B]

[B]+[AB]+[A2B]

[A]
  K1

[A]2
K1K2

+

1 + [A]
  K1

[A]2
K1K2

+

=

Equilibria involving buffer components

It is common to assay the binding of two macromolecules or the binding of a small ligand
to a macromolecule in a buffer that contains components that, in principle, might participate
in the reaction.  Assume, for example, that 2 chloride ions bind at a dimer interface and are
required for stable dimerization.

(A•Cl)2 ⇔ 2A + 2Cl

Intuitively, increasing the chloride concentration should result in more complex formation.
The proper equilibrium expression for this reaction is:

Kd = [A]2[Cl]2/[(A•Cl)2]

In such circumstances, however, an apparent equilibrium constant for dimerization would
often be written without explicit consideration of the chloride.

Kapp = [A]2/[A2]
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A bit of algebra yields

Kapp = Kd/[Cl]2

log (Kapp) = ln (Kd) - 2•log [Cl]

Thus, if Kapp were measured in buffers with different concentrations of NaCl, one would
expect a plot of log (Kapp) vs. log [Cl] to be linear with a slope of -2.  Experiments of this
type can be very useful in detecting the participation and stoichiometry of buffer
components in a reaction.
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Note, however, that because chloride ion and sodium ion increase together when we
increase the NaCl concentration, the experiment shown above does not show that chloride
rather than sodium is the buffer component involved in the reaction.  Control experiments
examining dimerization in buffers with different concentrations of KCl, KF, NaF,
Na2SO4, Na2PO4, etc. could be performed to test whether the anion or cation is important
and whether the reaction is specific for a particular anion or cation.

Proteins contain numerous ionizable groups and protons or hydrogen ions are frequently
involved in folding reactions, conformational change reactions, and binding reactions.
Thus, it is common for Kapp for a reaction to change as a function of [H+] concentration.
pH is just -log[H+] and thus plotting log Kapp against pH should reveal whether one or
more protons is required for the reaction.  Sometimes, however, a bound proton is not
absolutely required for the reaction but its presence does change the equilibrium constant.
We might write this set of reactions as follows:
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A   +   B                AB
+                             +
H+                          H+

AH+ + B              AH+B

K1

K2K3

K4

Imagine that we assay A binding to B at low pH where all species are protonated and find
that [AH+][B]/[AH+B] = 10-9 M.  This gives us an estimate of K4.  Now we repeat the
experiment at high pH where all the species are unprotonated and get [A][B]/[AB] = 10-7

M.  Thus, protonation of A makes the binding of B 100-fold stronger.  Because K1K2 =
K3K4, we know that K3 = 100•K2 (this simply says that the proton binds more tightly to
the AB complex than to free A).

We now measure Kapp at a series of different pH’s.  Because we don’t distinguish
protonated from unprotonated species in our binding assay,

Kapp =
[A + AH+][B]
[AB + AH+B]

To get Kapp as a function of [H+], we substitute [A][[H+]/K3 for AH+ and substitute
[AB][H+]/K2 for AH+B.  Rearranging and some more substitution gives:

Kapp =
1+[H+]/K3
1+[H+]/K2

K1

The data in the plot below was generated using K3 = 10-6 M (pKa = 6) which might be
expected for a histidine side chain.
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If this were experimental data, we could fit it to get pKa’s for proton binding to the free
protein (pKa = -log (K3) = 6) and to the complex (pKa = -log (K2) = 8).


