7.36/7.91/20.390/20.490/6.802/6.874

2-12-14 Recitation CB Lectures #2 and 3

Reminders

- Pset #1 due Feb. 20 at noon
- Pset #2 is posted if you are new to programming in Python, be sure to start early

7.36/7.91 recitation

- Wed. 4-5 (Peter) or Thurs. 4-5 (Colette)
- We will go over material covered in lecture and work through practice problems
- Fri. 4-5 recitation (6.874) has extra AI material
- Today:
 - basic probability and statistics
 - next gen sequencing
 - dynamic programming and alignment

P-values

- The P-value is the probability of observing, *under the null hypothesis*, a test statistic at least as extreme as the one that was observed
- What is the null model?
 - a basic or default position (e.g. two phenomena are not related, a coin is fair, etc.)
 - if there is no canonical distribution that captures behavior under the null, you can generate a null model by shuffling observed data (e.g. when aligning a query to a database, shuffle the database and see how often alignments occur by chance; shuffle sample labels)

P-value example

-You flip a coin 10 times and observe the following:

8 heads 2 tails

-Is this coin biased towards heads? How would you decide?

-Different null hypotheses require different tests

-H₀: Coin is not biased toward heads (one-tailed test)

-H₀: Coin is not biased (two-tailed test)

P-value example

- Calculate the probability of observing *at least* 8 heads, 2 tails under the *null* model H₀ that p = P(heads) = P(tails) = 0.5 (one-tailed test)
- Under the null model, the number of heads *x* out of *n* trials follows a Binomial Distribution with p = 0.5:

$$P(x;n,p) = \binom{n}{x} p^x (1-p)^{n-x}$$

P-value example

 Calculate the probability of observing at least 8 heads, 2 tails under the null model H₀ that p=P(heads)=P(tails)=0.5 (one-tailed test)

$$P(x \ge 8; n = 10, p = 0.5) = \sum_{x=8}^{10} {10 \choose x} (0.5)^x (1 - 0.5)^{10-x} = 0.05469$$

- We conclude that there is not enough evidence to reject the null hypothesis that coin is not biased towards heads at a significance level of 0.05 (since P-val > 0.05)

- If we were doing a two-sided test:

$$P(x \ge 8 \text{ or } x \le 2; n = 10, p = 0.5) = \sum_{x=0,1,2,8,9,10} {\binom{10}{x}} (0.5)^x (1-0.5)^{10-x} = 0.109$$

Next-generation (2nd generation) sequencing

-Sequencing is always of DNA

- need to convert RNA into DNA through reverse transcription (RT)
- -Illumina is currently dominating the field: 8 lanes on a flow cell, each lane can sequence ~200 million reads of length 100bp (or ~100 million 100bp paired-end reads)
 - can mix samples by introducing a 6nt barcode unique to each sample
 - requires (heterogeneous) population of cells to get enough DNA for sample
- -Single molecule sequencing (PacBio and Oxford Nanopore) with long reads (kb) has great potential, but technologies are still being developed

Sequence Alignments

-Local ungapped alignment (BLAST)

Dynamic Programming:

-Global alignment (all positions in both sequences must be matched, penalties at ends)

-Semiglobal alignment (all positions but no penalties at ends - longer sequence "matches" its ends to gaps flanking other sequence, but with no penalty)

-Local gapped alignment (highest scoring subsequence of x to subsequence of y)

-Match zinc finger domains of yeast Swi5 and Drosophila 1FU9

-Match promoter of chicken B-globin to the human genome

-Match mouse GAPDH to human GAPDH

Local ungapped alignment statistics (BLAST)

$$P(S > x) = 1 - e^{-KMNe^{-\lambda x}}$$

S: raw score (corresponding bit score - see BLAST tutorial)

M: (length of full query, regardless of match length)

N: (length of database)

x: score of match (match length indirectly affects this variable)

K, λ depend on score matrix & sequence composition

-We will give you K; λ is a parameter that scales inversely with magnitude of scoring system

Local ungapped alignment statistics (BLAST)

$$P(S > x) = 1 - e^{-KMNe^{-\lambda x}}$$

- The P-value for a score is the probability of obtaining a score **at least** as extreme as that which was observed

- Since scoring system for x is discrete, for a one-sided test this is:

$$P-\mathrm{val} = P(S \ge x) = P(S > x - 1)$$

- For continuous distributions in general, no correction needed:

$$P$$
-val = $P(S \ge x) = P(S > x)$

Local ungapped alignment statistics (BLAST) $\sum_{i,j=A,C,G,T} p_i r_j e^{\lambda s_{ij}} = 1$

- p_i : probability of nucleotide *i* in query
- r_j : probability of nucleotide *j* in target (e.g., database)

If arbitrary scoring matrix, how many terms in $\lambda?$	16 (plus a constant) - no analytic solution
If one score (+ for match, - for mismatch), how many terms?	2 (plus a constant) - y=e ^x yields quadratic equation with analytic solution; positive x gives unique solution
Any constraints on scoring matrix?	Expected score must be negative. Otherwise random sequences would have positive

scores and statistics break down.

Dynamic Programming

-Global, semiglobal, and local gapped alignments

-DP is a very powerful algorithmic paradigm in which a problem is solved by identifying a collection of subproblems and tackling them one by one, smallest first, using the answers to small problems to help figure out larger ones, until all of them are solved

-Each subproblem is filling in one entry of the matrix - i.e., finding the best scoring alignment up to match indicated by matrix entry

-We must have immediate left, upper, and upper left diagonal entries to create a match up through new position (i+1, i+1)

-This gives us three options when aligning a new position:

- 1. add gap in sequence 1 & use best alignment up to (i, i+1) (come from left)
- 2. add gap in sequence 2 & use best alignment up to (i+1, i) (come from upper)
- 3. match between two positions & use best alignment up to (i, i) (come from upper left diagonal)

-Fill out matrix entry by entry; use traceback at end to find highest scoring path

Local alignment example

Do a local alignment between these using PAM250 and gap penalty -2:

		С	s	т	Р	A	G	N	D	E	Q	н	R	к	М	I	L	v	F	Y	พ	
ent	C	12																				Ċ
0110	S	Ŭ	2																			
	Т	-2	1	3																		т
and	₽	-3	1	Q																		P
	A	-2		1	1	2																A
	G M	-3 -4	(-).4-) (-).4-)	C	+1 41	<u>1</u> 0	9 0	2														G N
	Ð	- 1	+ 0	ч Ю	±+ 1	Ŭ		4 22	4													Ū M
	E	-15 -15	ŏ	ŏ	-1	¢	1 0	lî	3	4												Ē
	ĝ	+5	-1	+1	ø	ŏ	+1	11	2	$\frac{1}{2}$	4											Ū.
	H	- 3	-1	-1	Ō	-1	-2	2	1	1	3	6										H
	R	-4	0	-1	0	-2	-3	0	-1	-1	1	2	6									R
	K	-5	0	0	-1	-1	-2	1	0	0	1	0	3	5								K
	М	-5	-2	-1	-2	-1	-3	-2	-3	-2	-1	-2	Ð	0	6							м
	Ι	-2	-1	D	-2	-1	-3	-2	-2	-2	-2	-2	-2	-2	2	5						Ι
	L	-6	-3	-2	-3	-2	-4	-3	-4	-3	-2	-2	-3	-3	4	2	6					Ŀ
	V.	÷2:	<u>-</u> ;}	: 0:	(+ 1)	::: : 0	:-1:	-2	÷2	: 32	-2:	÷2	: + 2	÷4:	: 2:	:4	:2:	: 4				¥.
	F	-4	-3	-3	-2	-4	-5 -5	14	-0	-5	-5	-4	-4	-5		1	2	-1	9			F
	Y W	0 8	-3	-0		-0	- 4	24	-4		- 4	, ŭ	-4		-4	1		-2 -6	ń	10 0	17	Y N
		С	s	Т	P	A	G	N	D	E	Q	н	R	K	М	I	L	V	F	Y	W	
		-									=									_		

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Local alignment solution

0				
0	0	0	0	-8
0	0	0	0	0
0	0	17	→ 15	→ 13
0	0	15	21)	→ 19
0	0	13	19	→ 17
	0	0 0 0 0	0 0 17 0 0 15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

W

E

Global alignment solution

	Gap	А	W	Е	к
Gap	0	-2	-4	-6	-8
F	-2 -	-4	-2 -		> -6
w	-4		13 -	-> 11	> 9
E	-6	-4	> -6	17	* 11
F	-8	-6	-4	15	12
alignmer	nt:	А	W	Е	K
-		F	W	Е	F

	Global	Semiglobal	Local (gapped)
Penalties at edges?	Yes	No	No
Reset to 0 instead of including negative entries?	No	No	Yes
End of alignment	Bottom right entry	Highest score entry in bottom row or rightmost column	Highest score entry in matrix

MIT OpenCourseWare http://ocw.mit.edu

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.