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Biomolecular Sequence Motif 

• A pattern common to a set of DNA, RNA or protein sequences that 
share a common biological property 
– nucleotide binding sites for a particular protein (TATA box in promoter, 5’ 

and 3’ splice site sequences) 
– amino acid residues that fold into a characteristic structure (zinc finger 

domains of TFs) 

• Consensus sequence is the one most common occurrence of the motif 
(e.g. TATAAA for TATA box) 
- Stronger motifs (= more information, lower entropy, less degenerate) have 

less deviation from consensus sequence 

- Position weight matrix gives the probability of each nucleotide or amino 
acid at each position 
- Assumes independence between positions 
- Can be visualized with a Sequence Logo 
      showing probability at each position 

 
     or with each position height scaled by the 
     information content of that position 
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Shannon Entropy 
- Defined over a probability distribution  

- The entropy measures the amount of uncertainty in the probability distribution 
- If given in bits, it’s the number of bits (0/1s) you would need in order to transmit a 

knowledge of a state (e.g. A, C, G, or T) drawn from the probability distribution 

- If there are n states in the distribution, what distribution has the highest entropy?  

- If there are n states in the distribution, what distribution has the lowest entropy?  
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Shannon Entropy 
- Shannon entropy of position over the 4 nucleotides: 

- Information content of a position j: 

Generally, Hj, before=2 bits (uniform 1/4 background composition) 

- For a motif of width w, if positions are independent (nucleotides at one position don’t 
affect composition of other positions) 

- What’s the information of a 5 nt long motif that consists only of pyrimidines (C/Ts – 
independent positions)? 5 bits (1 bit at each position)  4



Shannon Entropy 
- For longer  

- Information content of a position j: 

Generally, Hj, before=2 bits (uniform 1/4 background composition) 

- For a motif of width w, if positions are independent (nucleotides at one position don’t 
affect composition of other positions) 

- What’s the information of a 5 nt long motif that consists only of pyrimidines (C/Ts – 
independent positions)? 5 bits (1 bit at each position)  5



Mean-bit score of a motif 
• Use relative entropy (mean bit-score) of a distribution p 

relative to the background distribution q 
 
 

– n is the number of states; n=4w for nucleotide sequence of width w 

• The relative entropy is a measure of information of one 
distribution p relative to another q, not entropy/uncertainty 
(defined for a single distribution) 
– Better to use this for information of motif when background is non-random: For 

example, you have gained more information/knowledge upon observing a 
sequence k if it’s rare (if pk<1/n) than if it’s uniformly or highly likely or (pk≥1/n) 

• For sequences with uniform background (qk=1/4w): 

 

Hmotif is the Shannon entropy of the motif 

 

• A motif with m bits of information generally occurs once every 2m bases of 
random sequence 6



Non-random background sequences 
• What is the information content of a motif (model) that  consists 

of codons that always have the same nucleotide at the 1st and 3rd  
position? 

– There are 16 possible codons (4 possibilities for the first/third positions, and 4 possibilities for 
2nd position). 

– Assuming these are all equally likely, pk=1/16 for these codons, pk=0 otherwise (e.g. for AGT 
codon) 
 
 
 
 
 

- The 1st position determines the 3rd position, so the information that we’ve gained is complete 
knowledge of this position given the first position (i.e., the full information content of one 
position, which is 2 bits) 

- Also note that the Shannon entropy of the motif is  
 
 
 
 
 

 So relative to a uniform background distribution of codons (qk=1/64), the information 
content of this motif is:     I=2w – Hmotif = (2*3) – 4 = 2 bits (same as calculating Relative Entropy) 
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Gibbs Sampler 

• Type of Markov Chain Monte Carlo (MCMC) algorithm that 
relies on probabilistic optimization 
– Relies on repeated random sampling to obtain results 
– Due to randomness, can get different results from same starting 

condition; generally want to run algorithm many times and 
compare results to see how robust solution is 

– Determining when to stop is less well defined since random 
updates may or may not change at each iteration 

– Not forced to stay in local minimum; possible to “escape” it 
during a random sampling step 

– Initialization is less important; results from different 
initializations will often return similar results since they will 
“cross paths” at some point (sampling step) 

• Contrast this with a deterministic algorithm like the EM algorithm 
(GPS ChIP-seq peak-finding) – initial conditions are more important 
and results are deterministic given those initial conditions; cannot 
escape being stuck in local minimum 
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Gibbs Sampler 
• Goal: to find a motif (position weight matrix) in a set of sequences 

– Assumption: motif is present in each of your sequences 
• Doesn’t need to be true, but sequences without motif will dilute 

results (come up with more degenerate PWM) 

• General idea: probability of a motif occurring at any position in a 
sequence is proportional to the probability of that subsequence 
being generated by the current PWM 

–  Iteratively update: 
(1) PWM based on subsequences we think are motifs 
(2) Locations of the motif subsequences in the full sequences 
based on similarity to PWM 
 -randomness comes in (2) – choosing where start of 
subsequence is 

– Specifically, at each step we leave one sequence out and 
optimize the location of the motif in the left-out 
sequence 9



Gibbs Sampler 
Motif Finding

1. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag

2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctgatgga

3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccattccag

4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggattttacagca

5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta

6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

Transcription factor

argmin
s1,...,sp i< j

dist(si ,sj )

Hundreds of papers, many formulations (Tompa05)http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/gibbs.pdf 

Start with N sequences, searching for motif of length W (W < length each of sequence) 
 -Randomly choose a starting position in each sequence (a1, a2, …, aN) – the starting 
guess as to where motif is in each sequence 
 - Randomly choose one sequence to leave-out (will optimize motif position in this 
sequence) 
 - Make a PWM from N-1 subsequences at the starting positions in all sequences 
except the one left-out - For the left-out sequence (has length L), assign a probability 
from the currently estimated PWM for each of the subsequences starting at positions 1, 
2, …, L-W+1 
 - Normalize these probabilities to sum to 1 and select one at random from that 
distribution. This is the new position of the motif in the left-out sequence. 

Courtesy of Carl Kingsford. Used with permission.
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Gibbs Sampler 

http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/gibbs.pdf 

Start with N sequences, searching for motif of length W (W < length each of sequence) 
 -Randomly choose a starting position in each sequence (a1, a2, …, aN) – the starting 
guess as to where motif is in each sequence 
 - Randomly choose one sequence to leave-out (will optimize motif position in this 
sequence) 
 - Make a PWM from N-1 subsequences at the starting positions in all sequences 
except the one left-out 
 - For the left-out sequence (has length L), assign a probability from the currently 
estimated PWM for each of the subsequences starting at positions 1, 2, …, L-W+1 
 - Normalize these probabilities to sum to 1 and select one at random from that 
distribution. This is the new position of the motif in the left-out sequence. 

current PWM 

Prob. of subsequence starting at plotted position based on current PWM 

40% 5% 
10% 

8% 

Courtesy of Carl Kingsford. Used with permission.
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Gibbs Sampler Motif Finding

1. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag

2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctgatgga

3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccattccag

4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggattttacagca

5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta

6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

Transcription factor

argmin
s1,...,sp i< j

dist(si ,sj )

Hundreds of papers, many formulations (Tompa05)http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/gibbs.pdf 

Start with N sequences, searching for motif of length W (W < length each of sequence) 
 -Randomly choose a starting position in each sequence (a1, a2, …, aN) – the starting 
guess as to where motif is in each sequence 
 - Randomly choose one sequence to leave-out (will optimize motif position in this 
sequence) 
 - Make a PWM from N-1 subsequences at the starting positions in all sequences 
except the one left-out 
 - For the left-out sequence (has length L), assign a probability from the currently 
estimated PWM for each of the subsequences starting at positions 1, 2, …, L-W+1 
 - Normalize these probabilities to sum to 1 and select one at random from that 
distribution. This is the new position of the motif in the left-out sequence. R
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Courtesy of Carl Kingsford. Used with permission.
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Gibbs Sampler 
Motif Finding

1. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag

2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctgatgga

3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccattccag

4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggattttacagca

5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta

6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

Transcription factor

argmin
s1,...,sp i< j

dist(si ,sj )

Hundreds of papers, many formulations (Tompa05)
http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/gibbs.pdf 

When is convergence? 
 - Different options: go through N updates (each sequence once on average) and 
  (1) No motif subsequence location changes 
  (2) PWM changes less than desired amount (e.g. 1% at each position) 
-Gibbs sampler works better when: 
 - motif is present in each sequence 
 - motif is strong 
 - L is small (less flanking non-motif sequence) 
 - W is (close to) correct length 
- PWM may be a shifted version of true motif (missing first or last positions of motif) – once 

converged, you can shift PWM by 1+ positions forward or backward and see if you converge to 
better results (higher likelihood of generating sequences from new PWMs) 

- If computationally feasible, want to run the Gibbs sampler (1) for multiple motif lengths W, and 
(2) multiple times to gauge robustness of results 

Courtesy of Carl Kingsford. Used with permission.
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Review:  Markov Chains 

• Defined by a set of n possible states s1, ..., sn at each timepoint 

• Markov models follow the Markov Property:  Transition from state i to 
j (with probability Pi,j) depends only on the previous state, not any 
states before that. In other words, the future is conditionally 
independent of the past given the present: 

Example:  if we know individual 3’s genotype, there’s 
no additional information that individuals 1 and 2 
can give us about 5’s genotype.  So current state 
(individual 5's genotype) depends only on previous 
state (individuals 3 and 4). 
 14



Hidden Markov Models 
• What if we cannot observe the states (genotypes) directly, but instead 

observe some phenotype that depends on the state 

Aa 

AA Aa 

aa 

Aa 

1 2 

3 4 

5 

This is now a Hidden Markov Model – and we want to infer the most likely sequence of 
hidden genotypes for individuals 1,3, and 5, given observed cholesterol levels, and transition 
probabilities between genotypes. 

Instead we observe cholesterol level x, which is 
distributed differently for different genotypes G: 

if genotype is aa 

if genotype is Aa 

if genotype is AA 

Actual genotypes unknown 
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Graphical Representations 
• can be represented graphically by drawing circles for states, and arrows 

to indicate transitions between states 

CpG island not island 

0.99 0.95 
0.05 

0.01 

each hidden state "emits" an observable 
variable whose distribution depends on 
the state – what can we actually observe 
from the CpG island model? 

sunny rainy 

foggy 

0.1 

0.2 

0.7 0.2 

0.4 

0.4 

0.4 

0.3 

0.3 

arrow weights indicate probability of 
that transition 

we observe the bases A, T, G, C, 
where observing a G or C is more 
likely in a CpG island 

what might we observe to infer the 
state in this "weather" model? 
(pretend you can't see the weather 
because you're toiling away in a basement 
lab with no windows) 

we could use whether or not people 
brought their umbrellas to lab 
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Graphical Representations 
• can be represented graphically by drawing circles for states, and arrows 

to indicate transitions between states 

CpG island not island 

0.99 0.95 
0.05 

0.01 

sunny rainy 

foggy 

0.1 

0.2 

0.7 0.2 

0.4 

0.4 

0.4 

0.3 

0.3 

Given that we're currently in a CpG 
island, what is the probability that the 
next two states are CpG island (I) and 
not island (G), respectively? 

markov property 

If it's currently rainy, what's the probability that 
it will be rainy 2 days from now? 

Need to sum the probabilities over the 3 
possible paths RRR, RSR, RFR: 
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HMMs continued 

What information do we need in order to fully specify one of these models? 

(3) PE(X|S) = probability of emitting X given 
current state S 

C G A T 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 

(1) P1(S) = probability of starting in a particular 
state S (vector with dimension = # of states) 

G I 

(2) probability of transitioning from one state to 
another (square matrix w/ each dimension = # of 
states, usually called the transition matrix, T) 

G I 

I 

G 
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Using HMMs as generative models 

We want to generate a DNA sequence of length L that could be observed from this 
model 

G I 

C G A T 

(1) choose initial state from P1(S) 

(3) choose state at position i according to transition matrix and state at position 
i – 1, e.g. using PT(Si|Si-1) 

(2) emit first base of sequence according to current state and PE(X|S) 

(4) emit base of sequence according to current state Si and PE(X|Si) 

for 1 < i < L: 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 
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The Viterbi Algorithm 

Often, we want to infer the most likely sequence of hidden states S for a particular 
sequence of observed values O (e.g. bases); in other words, find 
        that maximizes  
-what is the optimal parse for the following sequence?  GTGCCTA 
-we're going to find this recursively, e.g. we find optimal parse of the first two 
bases GT in terms of paths up to the first base, G 

What is the optimal parse for the first base, G? 

- if first state is I? 

- if first state is G? 
P(X1 = G | S1 = I) = P1(I) * PE(G | S=I) = (0.1)*(0.4) = 0.04 

P(X1 = G | S1 = G) = P1(G) * PE(G | S=G) = (0.9)*(0.1) = 0.09 

Therefore, the optimal 
parse for the first base 
is state G (note this 
doesn't yet consider the 
rest of the sequence!) 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 

C G A T 

G I 
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Using HMMs as generative models 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 

What is the most likely parse for the following sequence?  GTGCCTA 

C G A T 

 S1  

G 

I 

G 

0.04 

0.09 
(1) 

(2) 

(1) S1 = G:   P(S1, S2, X1, X2) = 

Two possible ways of being in state G in position 2: 

(2) S1 = I:     P(S1, S2, X1, X2) = 

    0.09 *  PT(G | G)*PE(T | G)          

=0.09 * 0.9 * 0.4 = 0.0324 

    0.04 * PT(G | I) * PE(T | G)   

      = 0.04 * 0.2 * 0.4 = 0.0032 

prob of optimal sequence of hidden states ending with state 
G at pos. 1 

0.0324 

 S2  

T 
prob of optimal sequence of hidden states ending with state 
I at pos. 1 

G I 
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Using HMMs as generative models 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 

What is the most likely parse for the following sequence?  GTGCCTA 

C G A T 

 S1  

G 

I 

G 

0.04 

0.09 

(1) S1 = G:   P(S1, S2, X1, X2) = 

Now consider the possible ways of being in state I in  
position 2: 

(2) S1 = I:     P(S1, S2, X1, X2) = 

    0.09 * PT(I | G) * PE(T | I)  

= 0.09 * 0.1 * 0.1 = 0.0009 

    0.04 * PT(I | I) * PE(T | I)  

= 0.04 * 0.8 * 0.1 = 0.0032 

0.0324 

(1) 

(2) 
0.0032 

probability of the optimal parse ending with state I at 
position 2 is {S1=I, S2=I} 

 S2  

T 

G I 
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Using HMMs as generative models 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 

What is the most likely parse for the following sequence?  GTGCCTA 

C G A T 

 S1  

G 

I 

G 

0.04 

0.09 0.0324 

0.0032 

 S2  

T 

 S3  

G 
0.0324*0.9*0.1=0.0029 

0.0029 

G I 
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Using HMMs as generative models 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 

What is the most likely parse for the following sequence?  GTGCCTA 

C G A T 

 S1  

G 

I 

G 

0.04 

0.09 0.0324 

0.0032 

 S2  

T 

 S3  

G 

0.0032*0.8*0.4=0.001 

0.0029 

G I 

0.0013 

and so on... 
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Using HMMs as generative models 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 

What is the most likely parse for the following sequence?  GTGCCTA 

C G A T 

 S1  

G 

I 

G 

0.04 

0.09 0.0324 

0.0032 

 S2  

T 

 S3  

G 

0.0029 

G I 

0.0013 

 S4  

C 

2.61e-4 

4.16e-4 

 S5  

C 

2.35e-5 

1.33e-4 

 S6  

T 

1.06e-5 

1.06e-5 

 S7  

A 

3.83e-6 

8.52e-7 

Starting from highest final probability, traceback the path of hidden states: 

G T G C C T A 

G G I I I G G 
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Using HMMs as generative models 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 

What is the most likely parse for the following sequence?  GTGCCTA 

C G A T 

 S1  

G 

I 

G 

0.04 

0.09 0.0324 

0.0032 

 S2  

T 

 S3  

G 

0.0029 

G I 

0.0013 

 S4  

C 

2.61e-4 

4.16e-4 

 S5  

C 

2.35e-5 

1.33e-4 

 S6  

T 

1.06e-5 

1.06e-5 

 S7  

A 

3.83e-6 

8.52e-7 

How many possible paths do we consider when advancing one position (from L-1 to L)? 

Answer: k2. Therefore the run-time to obtain the optimal path up through pos. L is O(k2L). 
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Using HMMs as generative models 

Island (I) Genome (G) 

0.9 0.8 
0.2 

0.1 

What is the most likely parse for the following sequence?  GTGCCTA 

C G A T 

 S1  

G 

I 

G 

0.04 

0.09 0.0324 

0.0032 

 S2  

T 

 S3  

G 

0.0029 

G I 

0.0013 

 S4  

C 

2.61e-4 

4.16e-4 

 S5  

C 

2.35e-5 

1.33e-4 

 S6  

T 

1.06e-5 

1.06e-5 

 S7  

A 

3.83e-6 

8.52e-7 

What is optimal parse of the first 3 bases GTG? 

G T G 

G G G We start at the highest probability for the last base, so 
we begin our traceback from the circled point above 27



Midterm topics 
R Feb 06 CB L2 DNA Sequencing Technologies, Local Alignment (BLAST) and Statistics 
 
T Feb 11 CB L3 Global Alignment of Protein Sequences 
 
R Feb 13 CB L4 Comparative Genomic Analysis of Gene Regulation 
 
R Feb 20 DG L5 Library complexity and BWT  
 
T Feb 25 DG L6 Genome assembly 
 
R Feb 27 DG L7 ChIP-Seq analysis (DNA-protein interactions)  
 
T Mar 04 DG L8 RNA-seq analysis (expression, isoforms) 
 
R Mar 06 CB L9 Modeling & Discovery of Sequence Motifs 
 
T Mar 11 CB L10 Markov & Hidden Markov Models (+HMM content on 3/13)  
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