
4-16 Recitation 
EF Lecture #15 and DL Lecture #16 

Protein Interaction Networks & Computable Network Models 
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Reminders 
- Project due next Tuesday at midnight! 

- writeup description posted, email us if any questions 

- Problem Set #5 (last one!) will be out next Tuesday 
also  
- due Thurs, May 1st  
- a bit shorter, not a lot of programming 
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Predicting Protein Levels 
Recall the central dogma: 

 

 

 

 

 

 

• Let’s elaborate a little: 
• assume transcription and translation occur at rates vsr and ksp respectively 

• and mRNAs and proteins also degrade at rates kdr and kdp respectively 

• Then we can describe how R = mRNA conc. and P = protein conc. change over time 
using differential equations: 

 

DNA 

mRNA protein 

transcription translation 

vsr ksp 

mRNA  
degradation 

protein 
degradation 

kdr kdp 

dP

dt
= kspR – kdp P 

dR

dt
= vsr – kdr R 
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DNA 

mRNA protein 

transcription translation 

vsr ksp 

mRNA  
degradation 

protein 
degradation 

kdr kdp 

dP

dt
= kspR – kdp P 

dR

dt
= vsr – kdr R 

Experimentally, it is much easier to get mRNA levels 
(microarray, RNA-seq) than protein levels (2D 
electrophoresis, mass-spec), so we often use gene 
expression as an approximation of protein levels 
 

However, mRNA levels alone are generally poor 
predictors of protein levels, since they fail to account 
for either translation rates or protein degradation 
rates 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Predicting Protein Levels 
Recall the central dogma: 

 

 

 

 

 

 

 

DNA 

mRNA protein 

transcription translation 

vsr ksp 

mRNA  
degradation 

protein 
degradation 

kdr kdp 

dP

dt
= kspR – kdp P 

dR

dt
= vsr – kdr R 

Also, proteins tend to be more 
stable than RNA and to stick 
around in the cell longer, so the 
total amount of protein 
depends on the amount of RNA 
over a long period of time 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Schwanhäusser, Björn, Dorothea Busse, et al. "Global Quantification of
Mammalian Gene Expression Control." Nature 473, no. 7347 (2011): 337-42.
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Graph Terminology 
B 

E 

A 

D 

C 

Graph G1: 
undirected 

Graph G2: 
directed 

A graph G is specified as a list of nodes/vertices V and a list of edges E, so G = (V,E) 
 - G1 and G2 both have V = [A,B,C,D,E] 
 - G1 has undirected edges E = [(A,C),(A,D),(C,B),(B,E),(E,C),(D,E)] = 6 edges 
 - G2 has directed edges, so must give (parent,child) lists:  E = [(A,C),(B,C),(C,D),(C,E)] 

Degree(vertex) = # of edges incident on vertex, can split into in and out-degree if directed 
 - in G1, Degree(C) = 3 
 - in G2, vertex C has in-degree 2 and out-degree 2 

Paths between two vertices have length = sum of edge weights (= # of edges if no weights) 
 - in G1, one path from A to E is <A,C,E> and is of length 2. 
 - in G2, path from A to E is also <A,C,E> but is of length 0.2 + 0.9 = 1.1 

0.2 0.8 

0.6 0.9 

node/vertex 

undirected 
edge 

edge weights 
directed edge + 

A B 

C 

D E 
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Adjacency Matrix 
B 

E 

A 

D 

C 

Graph G1: 
undirected 

Graph G2: 
directed 

0.2 0.8 

0.6 0.9 

The adjacency matrix A of a graph with 
N nodes is an NxN matrix where Aij = 
the weight of edge from node i to node 
j in the graph if it exists, and 0 if there is 
no edge 
- symmetric if graph is undirected 

i j 

Adjacency matrix for G1 

A B C D E 

A 0 0 0.2 0 0 

B 0 0 0.8 0 0 

C 0 0 0 0.6 0.9 

D 0 0 0 0 0 

E 0 0 0 0 0 

i j 

Adjacency matrix for G2 

A B C D E 

A 0 0 1 1 0 

B 0 0 1 0 1 

C 1 1 0 0 1 

D 1 0 0 0 1 

E 0 1 1 1 0 

A B 

C 

D E 
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Adjacency Matrix 

A B C D E 

A 0 0 1 1 0 

B 0 0 1 0 1 

C 1 1 0 0 1 

D 1 0 0 0 1 

E 0 1 1 1 0 

i j 

A1 

Let Ak be adjacency matrix A raised to the kth power where 
Aij is either 1 or 0 (e.g. does not take edge weights into 
account).  Then the ijth entry of Ak corresponds to the 
number of paths from node i to node j of length k 
 - note:  path length = # of edges traversed 

A B C D E 

A 2 1 0 0 2 

B 1 2 1 1 1 

C 0 1 3 2 1 

D 0 1 2 2 0 

E 2 1 1 0 3 

i j 

A2 

A B 

C 

D E 

How many paths of length 2 are there from A to E? 

A B C D E 

A 0 2 5 4 1 

B 2 2 4 2 4 

C 5 4 2 1 6 

D 4 2 1 0 5 

E 1 4 6 5 2 

i j 

A3 

 A2
AE = 2 so there are 2 paths of length 2 from A to E:  A-C-E and A-D-E 

How many paths of length 3 are there from A to E? 
 A3

AE = 1 so there is 1 path of length 3 from A to E:  A-C-B-E   
How many paths of length 3 are there from A to D? 
 A3

AD = 4 so 4 paths:  A-D-E-D, A-C-E-D, A-C-A-D, A-D-A-D 8



Network Models in Biology 
• Many types of large (hairball) networks 

• PPI, genetic interactions, expression networks…. 

• Many large networks exist today – we can use these to predict function for the large number of 
functionally unannotated genes 

• Today, we will cover algorithms to annotate nodes in these networks 

A large number of genes across many organisms 
still have unknown function 

Networks can help us predict function – closeness in a 
network may indicate functional similarity 

Source: Sharan, Roded, Igor Ulitsky, et al. "Network‐based Prediction of
Protein Function." Molecular Systems Biology 3, no. 1 (2007).9

© EMBO and Nature Publishing Group. All rights reserved. This content is

excluded from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.
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Annotating graphs 
• Directly annotating unknown nodes 

• K-nearest neighbors 

• Local search 

• Simulated annealing 

 

• Clustering graphs (then annotate each cluster) 
• Betweenness clustering 

• Markov clustering 
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K-nearest neighbor approach 
• Assumes that a node has related function to its neighbors 

• Start with a partially known graph (shaded nodes) 

• Assign function based on its neighbors within distance k – easy to 
compute 

 

u 

k = 1 

k = 2 k = 1: No neighbors are annotated and 
we are unable to annotate node u. 
 
k = 2: Two neighbors are now 
annotated. We assign the same 
annotation to node u. 
 
What if nodes have different 
annotations? Should u and v have the 
same annotation?  

v 
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Local Search Algorithm 
u c 

a 

b 

d 

Values assigned currently 
considering blue annotation 

u c 

a 

b 

d 

Values assigned currently 
considering green annotation 

Sa=1 

Sb=1 

Su=-1 Sd=-1 

Sc=-1 

Sc=1 

Sb=-1 

Sa=-1 

Su=-1 Sd=1 

• Allows us to deal with multiple nearby annotations 
 
 
 - For each annotation (e.g. green, blue): 
  - For each node i, set Si=1 if i has that 
   annotation, Si=-1 otherwise 
  - For each unannotated node, set Si such that it 
   maximizes                 over all  
   neighbors v                          
  
  

If most neighbors are +1, this 
will lead to Si=+1. If most 
neighbors are -1, this will lead 
to Si=-1. 
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Local Search Algorithm 
u c 

a 

b 

d 

Values assigned currently 
considering blue annotation 

Sa=1 

Sb=1 

Su=-1 Sd=-1 Sc=1 

• Allows us to deal with multiple nearby annotations 
 
 
 - For each annotation (e.g. green, blue): 
  - For each node i, set Si=1 if i has that 
   annotation, Si=-1 otherwise 
  - For each unannotated node, set Si such that it 
   maximizes                 over all  
   neighbors v                          
  
  

If most neighbors are +1, this 
will lead to Si=+1. If most 
neighbors are -1, this will lead 
to Si=-1. 

If we want to annotate Su, we see 
that it should be blue (+1 from the 
blue perspective) in order to 
maximize: 
  Su(Sa+Sb+Sd)   
=Su(1+1-1) 
=Su      Su=1  
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Local Search Algorithm 
• In complex graphs with lots of unannotated nodes, local search may 

not find good solutions – local optimization can’t find global solution 

• For example, if we try to annotate node b first, turning it to blue 
would actually make the score worse, so we would never turn b blue 

a c b 

15



Simulated Annealing 
As before, to perform global optimization, we use our usual Simulated Annealing approach with Metropolis 
Acceptance criterion. If we want a high scoring graph (instead of low energy as in protein structure): 
  
 - Initialize with starting T and a graph G with score S 
 - For some number of iterations:  
  - Randomly perturb the network (may add/remove/reweight an edge or include/exclude a 
  vertex), giving Gtest with score Stest 
  - If Stest > S, accept the new graph and update G and S 
  - Otherwise, accept the new graph with probability P=e-(S-Stest)/kT and update accordingly 

 - Lower T according to the cooling schedule 
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Annotating graphs 
• Directly annotating unknown nodes 

• K-nearest neighbors 

• Local search 

• Simulated annealing 

 

• Clustering graphs (then annotate each cluster) 
• Betweenness clustering 

• Markov clustering 
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Clustering graphs 
• Divide large graph into subgraphs, each of which has: 

• Lots of internal connections 

• Few connections to the rest of the graph 

 

• Two algorithms 
1. Betweenness clustering 

2. Markov clustering 

 

• Once we have clustered a graph, we can annotate each cluster 

We would like to split this graph 
into its 2 logical subgraphs. 
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Betweenness clustering 
• Betweenness – property of edges 

• Number (or summed weight) of shortest paths between all pairs of vertices 
that pass through that edge 

• Split weight among multiple shortest paths if there are more than 1 for a pair 
of nodes This edge (and others within the respective clusters) 

have low betweenness. In this particular case, this 
edge is contained in only one shortest path (the 
shortest path between the two nodes it connects) 

This edge (connecting the two clusters) has high 
betweenness. This edge is contained in all shortest 
paths between the left and right subgraphs. 
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Betweenness clustering algorithm 
• Precompute shortest paths between all pairs of nodes (Floyd-

Warshall/Johnson’s algorithm) 

• Repeat until max betweenness < threshold: 
• For each edge in the graph: 

• Compute betweenness 

• Remove edge with high betweenness 

 

• As we remove edges with high betweenness, we are breaking the 
graph into chunks that are more connected internally 
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Markov clustering 
• Intuition: A random walk will spend more time within a cluster than 

passing between cluster 

If we assume all edges are equally weighted in this 
graph, there is only one way to get from the left 
subgraph to the right subgraph, while there are many 
more options (and therefore we are more likely) to 
stay in a particular subgraph. 
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Stochastic Matrix 
• If we normalize along the rows of the adjacency matrix, we generate a 

new matrix M (with the same dimensions as A), where the ijth entry 
of M represents the probability of moving from node i to node j 
during the random walk 

 

 A B 

C 

D E 

A A B C D E 

A 0 0 1 1 0 

B 0 0 1 0 1 

C 1 1 0 0 1 

D 1 0 0 0 1 

E 0 1 1 1 0 

M A B C D E 

A 0 0 ½ ½  0 

B 0 0 ½ 0 ½ 

C .33  .33  0 0 .33 

D ½  0 0 0 ½ 

E 0 .33 .33 .33 0 
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Stochastic Matrix 

• Recall: the ijth entry of Ak corresponds to the number of paths from 
node i to node j of length k 

• Similarly: the ijth entry of Mk corresponds to the probability of moving 
from node i to node j in k steps 
• The probability of moving from i to j in two steps is given by 

 

 

A B 

C 

D E 

A A B C D E 

A 0 0 1 1 0 

B 0 0 1 0 1 

C 1 1 0 0 1 

D 1 0 0 0 1 

E 0 1 1 1 0 

M A B C D E 

A 0 0 ½ ½  0 

B 0 0 ½ 0 ½ 

C .33  .33  0 0 .33 

D ½  0 0 0 ½ 

E 0 .33 .33 .33 0 
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• the ijth entry of Mk corresponds to the probability of moving from node i to 
node j in k steps 
• The probability of moving from i to j in two steps is given by 

• If we keep multiplying the stochastic matrix, we compute probabilities of 
longer walks – we expect that transitions will occur more frequently within 
a natural cluster than between them 

• To produce discrete clusters, Markov clustering also includes an inflation 
step to exaggerate these effects – make high probabilities higher and low 
probabilities lower 
• Inflation step: raise each element to the k power and renormalize 

 

 

 

 

Stochastic Matrix 

k = 2 
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Markov clustering algorithm 
• G is a graph 

• add self-transition loops to G to allow for no transition (e.g. staying in 
current node) 

• Set inflation parameter (e.g. k=2) 

• Initialize M1 to be the initial stochastic matrix of G 

• Until convergence (e.g. while the stochastic matrix keeps changing): 
• M2 = M1 * M1 

• M1 = inflate M2 

• Once you’ve converged, set the clustering to be the components of M1 
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Clustering graphs 
• Markov clustering is a faster algorithm since it only requires matrix 

operations 

 

• How do we decide which function to assign to members of a cluster? 
• Consensus based on nodes within each cluster that are already annotated 

• Determine significance by hypergeometric / use Gene Ontology 
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Annotating graphs 
• Directly annotating unknown nodes 

• K-nearest neighbors 

• Local search 

• Simulated annealing 

 

• Clustering graphs (then annotate each cluster) 
• Betweenness clustering 

• Markov clustering 
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Network Modules 
• Networks have a modular structure 
• Topological modules 

• subgraphs which are locally dense 
and have more connections among 
nodes within the module than with 
nodes outside the module 

• we found topological modules in our 
clustering algorithms 

• Functional modules 
• subgraphs with a high density of 

functionally related nodes 
• we will look for functional modules in 

the active subnet algorithms (next)  

 
 

Courtesy of Macmillan Publishers Limited.  Used with permission.
Source: Barabási, Albert-László, Natali Gulbahce, et al. "Network Medicine: A Network-based
Approach to Human Disease." Nature Reviews Genetics 12, no. 1 (2011): 56-68.
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Active Subnet Problem 
• So far, we have focused on labelling the nodes of a graph 

• Now, assume we already have a labelled graph (e.g. We took a PPI 
network and labelled the edges with expression data – high/low) 

• We would now like to find connected components of these graphs are 
enriched in a particular label – this is the active subnet problem (e.g. 
finding PPI subnetwork with high expression) 

• This can reveal the hidden components of a biological response 
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Active Subnet Problem 
• This problem has already been 

studied in theoretical Computer 
Science 

• Steiner Tree Problem (NP-hard): 
• Given a graph G = (V, E, w) (vertices, 

edges, and weights) and a subset  
(vertices of interest) 

• Find the minimum weight tree 
(connected set of edges) that spans 
all the vertices in S 

• (we didn’t cover any algorithms in 
class – a couple optimization 
algorithms were sited) 

We would like to find the minimum tree 
connecting all yellow nodes (given by blue lines). 
 

However, we would also like to exclude the 
rightmost yellow node as its distance suggests it 
may be a false positive. 
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Active Subnet Problem 

• To avoid false positives, we solve a problem variant – the 
prize-collecting Steiner tree problem 

• Intuition: 

 

 

 

• The terms in the objective function balance each other 
• Adding too many edges to get to a node far away will induce a high 

edge penalty while collecting lower prize for the node 

 

We pay a penalty for each vertex 
we do not include in the Steiner 
tree (we collect a prize for each 
vertex we do include) 

We pay a cost for including edges in 
the Steiner tree 
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Active Subnet Problem 
• While a traditional Steiner Tree would include the distant node, given 

some setting of the edge penalties and vertex prizes, the prize 
collecting Steiner Tree could exclude the node 

• Eg. If this is a PPI network, the distantly labelled node could be highly 
expressed, but we would consider it unlikely to interact given its 
distance in the network 
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Data Integration 
• When looked at individually, different data sources (mRNA levels vs 

gene knockout fitness) can give very different results 
• Genetic screens usually detect  master regulators 

• mRNA measurements detect effectors (metabolic proteins) 

• We can integrate these sources by piling the data into one network 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Logic modeling of cell signaling networks 

• We can study gene signaling networks at many data levels 
• DNA sequence 

• mRNA expression 

• Protein levels 

• Dynamic protein operations (e.g. phosphorylation) 

• Integrating these is difficult, but important to understand the full 
range of processes that might contribute to differences between 
normal and disease states 

35



Difficulties in studying cancer 
• There are many different genetic alterations that are observed within 

a tumor type 

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jones, Siân, Xiaosong Zhang, et al. "Core Signaling Pathways in Human Pancreatic Cancers
Revealed by Global Genomic Analyses." Science 321, no. 5897 (2008): 1801-6.
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Difficulties in studying cancer 
• There are many different genetic alterations that are observed within 

a tumor type 

• But many of these mutations converge into a limited set of proteins 
and pathways 

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jones, Siân, Xiaosong Zhang, et al. "Core Signaling Pathways in Human Pancreatic Cancers
Revealed by Global Genomic Analyses." Science 321, no. 5897 (2008): 1801-6.
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Difficulties in studying cancer 
• There are many different genetic alterations that are observed within 

a tumor type 

• But many of these mutations converge into a limited set of proteins 
and pathways 
• We need to turn these pathways into computable models and circuitry that 

we can make predictions from and use as a basis for intervention strategies 
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Computational Modeling Approaches 
• Differential equations (“theory-driven”) 

• Can write down differential equation models for up to dozens of variables to 
represent cellular mechanisms 

• However, we generally don’t know enough about the rate constants to make 
differential equation models useful 

• “Data-driven”: regression, clustering of large data sets (e.g. RNA-seq, 
signaling pathway output measurements, mass-spec. proteomics) 

39



Logic-based modeling 
• We often take an intermediate approach that incorporates what is 

known (theory-driven) with data-driven experimental analyses 
• Incorporate existing pathway/interactome databases 

• Challenge: different databases often give disparate or even conflicting results! 

• Data is also very diverse: may come from different species, cell type, growth conditions, etc. 

• We can use these pathways and interactions as a starting point, but due to these limitations 
they can’t tell us everything 

• We must turn this starting network topology into an actionable, computable model by 
integrating relevant experimental data 
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Boolean Framework 
• Often used on top of the network structure to explain experimental 

observations 

• Variables (nodes – e.g. TFs or signaling molecules) are ON/OFF 

• We connect nodes through AND & OR logic gates to represent cellular 
interactions & pathways 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Boolean Framework 
• Often used on top of the network structure to explain experimental 

observations 

• Variables (nodes – e.g. TFs or signaling molecules) are ON/OFF 

• We connect nodes through AND & OR logic gates to represent cellular 
interactions & pathways 

• We can then perturb the variables in silico to predict outcomes if we 
introduce a therapeutic  

42



Sample Experimental Data 
• Phoshoproteomic data (measuring the activity state of pathway molecules) 

• Multiple relevant signaling pathways 

• Introduce perturbations (e.g. inhibitor molecules) and measure outputs at various time points 

Multi-Pathway Phosphoproteomic Data – 

primary human hepatocytes, HepG2 hepatocellular line 

-- also cell death, proliferation index, and production of ~50 cytokines 

for each condition 

Time-points: 0, 30 min, 3 hrs 

TRANSIENT LATE 

NO RESPONSE SUSTAINED 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.43
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Sample Experimental Data 
• Phoshoproteomic data (measuring the activity state of pathway molecules) 

• Multiple relevant signaling pathways 

• Introduce perturbations (e.g. inhibitor molecules) and measure outputs at various time points 

• Try to model the experimental data using the multiple potential networks (graph structures 
and associated quantitative relationships) from the databases 
• We must define some way to evaluate the model’s performance to decide which is the most likely network 

 

 

 

 

 

• We want to consider not necessarily the single best model (because of experimental noise), but look at the 
full spectrum of top performing models to come up with a representative family of models 
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Improving upon models 
• From the top performing model(s), make some perturbations of the model (via 

genetic algorithms) to improve the fit (similar to what we saw for Bayesian networks, 
e.g. Pebl) 

• How well does this work in practice? 
• If we simply take the best result from the database and fit the experimental data to the model, 

we get ~45% error (because not all interactions are real and some are missing, might be the 
wrong cell type or environmental condition, etc.) 

• After model improvement (e.g. adding and removing edges), we may be able to reduce the error 
to below 10% 

• Often the model is not as complex as we might expect! Introducing too many variables may lead 
to simply fitting to noise and increase false positives 
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What are models used for? 
• Can make predictions for new inhibitor combinations (therapeutic drug 

cocktails) that may be infeasible to exhaustively test experimentally 
• Comparing where our model predictions went wrong based on new experimental 

data informs us where our network model may be incorrect and how we might 
improve it 

• Edges that are included in the model and needed to explain the data can inform 
us about cellular processes (interactions that are missing in the databases or off-
target effects of drugs) 
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Extending Boolean Logic for analog data 

• Boolean logic deals with qualitative YES/NO (ON/OFF) relationships, 
but quantitative data is continuous 
• Instead of a step function from OFF to ON at a particular value, use 

continuous functions that have a graded slope from OFF to ON over a range of 
values 
• More realistic, but this ~doubles the number of free parameters in the model, so we 

need much more experimental data  
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Fin 
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